|  Help  |  About  |  Contact Us

Search our database by keyword

- or -

Examples

  • Search this entire website. Enter identifiers, names or keywords for genes, diseases, strains, ontology terms, etc. (e.g. Pax6, Parkinson, ataxia)
  • Use OR to search for either of two terms (e.g. OR mus) or quotation marks to search for phrases (e.g. "dna binding").
  • Boolean search syntax is supported: e.g. Balb* for partial matches or mus AND NOT embryo to exclude a term

Search results 1 to 5 out of 5 for Aip

Category restricted to ProteinDomain (x)

0.016s

Categories

Category: ProteinDomain
Type Details Score
Protein Domain
Type: Family
Description: Arylhydrocarbon (AH) receptor-interacting protein (AIP) is a tetratricopeptide repeat (TPR)-containing protein that interacts with a large number of independent proteins as well as three chaperone systems, HSP90, HSP70 and TOMM20 [, ]. Germline mutations in the AIP gene predispose to young-onset pituitary tumours, most often to GH- or prolactin-secreting adenomas, and most of these patients belong to familial isolated pituitary adenoma families []. The structure of AIP has been revealed [].
Protein Domain
Type: Family
Description: This entry represents a group of archaetidylinositol phosphate synthases (AIP synthases), including MTH1691 from Methanothermobacter thermautotrophicus. AIP synthase catalyses the formation of archaetidylinositol phosphate (AIP) from CDP-archaeol (CDP-ArOH or CDP-2,3-bis-(O-phytanyl)-sn-glycerol) and 1L-myo-inositol 1-phosphate (IP or 1D-myo-inositol 3-phosphate) [].
Protein Domain
Type: Family
Description: Proteins in this entry have an N-terminal FKBP-type peptidyl-prolyl cis-trans isomerase domain followed by a C-terminal tetratricopeptide repeat-containing domain. Included in this entry are: aryl-hydrocarbon-interacting protein-like 1 (AIPL1), which is associated with inherited blindness and interacts with cell cycle regulator protein NUB1 []; and AH receptor-interacting protein (AIP), which interacts with the tyrosine kinase receptor RET [], and mutations in AIP are associated with familial isolated pituitary adenomas [].
Protein Domain
Type: Family
Description: Members of this family of short peptides are precursors to thiolactone (unless Cys is replaced by Ser) cyclic autoinducer peptides, used in quorum-sensing systems in Gram-positive bacteria. The best characterised is the AgrD precursor, processed by the AgrB protein. Nearby proteins regularly encountered include a histidine kinase and a response regulator. The agr locus was initially described in Staphylococcus aureus as an element controlling the production of exoproteins implicated in virulence. Its pattern of action has been shown to be complex, upregulating certain extracellular toxins and enzymes expressed post-exponentially and repressing some exponential-phase surface components. AgrD encodes the precursor of the autoinducing peptide (AIP).The AIP derived from AgrD by the action of AgrB interacts with AgrC in the membrane to activate AgrA, which upregulates transcription both from promoter P2, amplifying the response, and from P3, initiating the production of a novel effector: RNAIII. In S. aureus, delta-hemolysin is the only translation product of RNA III and is not involved in the regulatory functions of the transcript, which is therefore the primary agent for modulating the expression of other operons controlled by agr [].
Protein Domain
Type: Family
Description: This entry represents the accessory gene regulator protein B (AgrB) family. Proteins in this family include AgrB from Staphylococcus aureus and FsrB from Enterococcus faecalis. The accessory gene regulator (agr) of Staphylococcus aureus is the central regulatory system that controls the gene expression for a large set of virulence factors. The arg locus consists of two transcripts: RNAII and RNAIII. RNAII encodes four genes (agrA, B, C, and D) whose gene products assemble a quorum sensing system. At low cell density, the agr genes are continuously expressed at basal levels. A signal molecule, autoinducing peptide(AIP), produced and secreted by the bacteria, accumulates outside of the cells. When the cell density increases and the AIP concentration reaches athreshold, it activates the agr response, i.e. activation of secreted protein gene expression and subsequent repression of cell wall-associated protein genes. AgrB and AgrD are essential for the production of the autoinducing peptide which functions as a signal for quorum sensing. AgrB is a transmembrane protein []involved in the proteolytic processing of AgrD, and may have both proteolytic and transporter activities, facilitating the export ofthe processed AgrD peptide []. FsrB may be involved in the proteolytic processing of a quorum sensing system signal molecule precursor required for the regulation of the virulence genes for gelatinase (gelE) and a serine protease (sprE) [].A cysteine peptidase is a proteolytic enzyme that hydrolyses a peptide bond using the thiol group of a cysteine residue as a nucleophile. Hydrolysis involves usually a catalytic triad consisting of the thiol group of the cysteine, the imidazolium ring of a histidine, and a third residue, usually asparagine or aspartic acid, to orientate and activate the imidazolium ring. In only one family of cysteine peptidases, is the role of the general base assigned to a residue other than a histidine: in peptidases from family C89 (acid ceramidase) an arginine is the general base. Cysteine peptidases can be grouped into fourteen different clans, with members of each clan possessing a tertiary fold unique to the clan. Four clans of cysteine peptidases share structural similarities with serine and threonine peptidases and asparagine lyases. From sequence similarities, cysteine peptidases can be clustered into over 80 different families []. Clans CF, CM, CN, CO, CP and PD contain only one family.Cysteine peptidases are often active at acidic pH and are therefore confined to acidic environments, such as the animal lysosome or plant vacuole. Cysteine peptidases can be endopeptidases, aminopeptidases, carboxypeptidases, dipeptidyl-peptidases or omega-peptidases. They are inhibited by thiol chelators such as iodoacetate, iodoacetic acid, N-ethylmaleimide or p-chloromercuribenzoate.Clan CA includes proteins with a papain-like fold. There is a catalytic triad which occurs in the order: Cys/His/Asn (or Asp). A fourth residue, usually Gln, is important for stabilising the acyl intermediate that forms during catalysis, and this precedes the active site Cys. The fold consists of two subdomains with the active site between them. One subdomain consists of a bundle of helices, with the catalytic Cys at the end of one of them, and the other subdomain is a β-barrel with the active site His and Asn (or Asp). There are over thirty families in the clan, and tertiary structures have been solved for members of most of these. Peptidases in clan CA are usually sensitiveto the small molecule inhibitor E64, which is ineffective against peptidases from other clans of cysteine peptidases [].Clan CD includes proteins with a caspase-like fold. Proteins in the clan have an α/β/α sandwich structure. There is a catalytic dyad which occurs in the order His/Cys. The active site His occurs in a His-Gly motif and the active site Cys occurs in an Ala-Cys motif; both motifs are preceded by a block of hydrophobic residues []. Specificity is predominantly directed towards residues that occupy the S1 binding pocket, so that caspases cleave aspartyl bonds, legumains cleave asparaginyl bonds, and gingipains cleave lysyl or arginyl bonds.Clan CE includes proteins with an adenain-like fold. The fold consists of two subdomains with the active site between them. One domain is a bundle of helices, and the other a β-barrell. The subdomains are in the opposite order to those found in peptidases from clan CA, and this is reflected in the order of active site residues: His/Asn/Gln/Cys. This has prompted speculation that proteins in clans CA and CE are related, and that members of one clan are derived from a circular permutation of the structure of the other.Clan CL includes proteins with a sortase B-like fold. Peptidases in the clan hydrolyse and transfer bacterial cell wall peptides. The fold shows a closed β-barrel decorated with helices with the active site at one end of the barrel []. The active site consists of a His/Cys catalytic dyad.Cysteine peptidases with a chymotrypsin-like fold are included in clan PA, which also includes serine peptidases. Cysteine peptidases that are N-terminal nucleophile hydrolases are included in clan PB. Cysteine peptidases with a tertiary structure similar to that of the serine-type aspartyl dipeptidase are included in clan PC. Cysteine peptidases with an intein-like fold are included in clan PD, which also includes asparagine lyases.