|  Help  |  About  |  Contact Us

Search our database by keyword

- or -

Examples

  • Search this entire website. Enter identifiers, names or keywords for genes, diseases, strains, ontology terms, etc. (e.g. Pax6, Parkinson, ataxia)
  • Use OR to search for either of two terms (e.g. OR mus) or quotation marks to search for phrases (e.g. "dna binding").
  • Boolean search syntax is supported: e.g. Balb* for partial matches or mus AND NOT embryo to exclude a term

Search results 1 to 6 out of 6 for Vps13d

Category restricted to ProteinDomain (x)

0.019s

Categories

Category: ProteinDomain
Type Details Score
Protein Domain
Type: Domain
Description: This entry represents the UBA domain of the intermembrane lipid transfer protein VP13D (also known as vacuolar protein sorting-associated protein 13D), which is a ubiquitin-binding protein that contains two putative domains, ubiquitin-associated (UBA) domain and lectin domain of ricin B chain profile (ricin-B-lectin) []. The UBA domain of Vps13D has been shown to bind K63 ubiquitin chains. Vps13D plays important roles in mitochondrial health and development. It is also necessary for autophagy, mitochondrial size, and mitochondrial clearance in Drosophila [].
Protein Domain
Type: Domain
Description: This domain lies towards the N terminus, just downstream from . This domain is involved in lipid binding and transport [, , ]. This domain specifically interacts with phosphatidic acid and phosphorylated forms of phosphatidyl inositol [].VPS13 proteins have been implicated in processes including vesicle fusion, autophagy, and actin regulation. They bind phospholipids and act as channels that mediate the transfer of lipids between membranes at organelle contact sites [, , ]. It has been proposed that members of this entry have the capacity to bind and likely transfer tens of glycerolipids at once. Yeast VPS13 acts at multiple cellular sites, namely the interface between mitochondria and the vacuole, on endosomes, on the nuclear-vacuole junction and the vacuole, depending on the carbon source and metabolic state. Most evidence showed that mammalian VPS13A, VPS13C and VPS13D localize at contacts between the ER and other organelles, i.e. VPS13A and VPS13D bridge the ER to mitochondria, VPS13C bridges the ER to late endosomes and lysosomes and VPS13B may localize to endosome-endosome contacts [, , ]. Mutations in human VPS13 proteins (VPS13A-D) cause different diseases such as Chorea-acanthocytosis, Cohen syndrome, Parkinson's disease, and spastic ataxia, respectively which suggests they have different functions [, ].
Protein Domain
Type: Domain
Description: This entry represents a domain reminiscent of a DH domain (DH-Like domain) found adjacent the C-terminal PH-like domain of VPS13 proteins [, , , ]. DHL-PH domains has been identified as the mitochondria-binding region of VPS13A and the lipid droplet-binding region of both proteins. These two domains contain a region of high similarity to ATG2, which also binds lipid droplets [, ].VPS13 proteins have been implicated in processes including vesicle fusion, autophagy, and actin regulation. They bind phospholipids and act as channels that mediate the transfer of lipids between membranes at organelle contact sites [, , ]. It has been proposed that members of this entry have the capacity to bind and likely transfer tens of glycerolipids at once. Yeast VPS13 acts at multiple cellular sites, namely the interface between mitochondria and the vacuole, on endosomes, on the nuclear-vacuole junction and the vacuole, depending on the carbon source and metabolic state. Most evidence showed that mammalian VPS13A, VPS13C and VPS13D localize at contacts between the ER and other organelles, i.e. VPS13A and VPS13D bridge the ER to mitochondria, VPS13C bridges the ER to late endosomes and lysosomes and VPS13B may localize to endosome-endosome contacts [, , ]. Mutations in human VPS13 proteins (VPS13A-D) cause different diseases such as Chorea-acanthocytosis, Cohen syndrome, Parkinson's disease, and spastic ataxia, respectively which suggests they have different functions [, ].
Protein Domain
Type: Domain
Description: This entry represents the repeating region of VPS13. This repeating region shares a common core element that includes a well-conserved P-X4-P-X13-17-G sequence [, ]. This region contains a FFAT motif which mediates VAMP binding and tethering of the ER.VPS13 proteins have been implicated in processes including vesicle fusion, autophagy, and actin regulation. They bind phospholipids and act as channels that mediate the transfer of lipids between membranes at organelle contact sites [, , ]. It has been proposed that members of this entry have the capacity to bind and likely transfer tens of glycerolipids at once. Yeast VPS13 acts at multiple cellular sites, namely the interface between mitochondria and the vacuole, on endosomes, on the nuclear-vacuole junction and the vacuole, depending on the carbon source and metabolic state. Most evidence showed that mammalian VPS13A, VPS13C and VPS13D localize at contacts between the ER and other organelles, i.e. VPS13A and VPS13D bridge the ER to mitochondria, VPS13C bridges the ER to late endosomes and lysosomes and VPS13B may localize to endosome-endosome contacts [, , ]. Mutations in human VPS13 proteins (VPS13A-D) cause different diseases such as Chorea-acanthocytosis, Cohen syndrome, Parkinson's disease, and spastic ataxia, respectively which suggests they have different functions [, ].
Protein Domain
Type: Domain
Description: This is the N-terminal chorein domain of VPS13 and ATG2 proteins, which is highly conserved. ATG2 proteins are involved in autophagosome assembly, playing a key role in nonvesicular lipid transfer [, , , ]. This domain has a scoop shape whose concave surface is lined by hydrophobic residues which bind glycerophospholipids.VPS13 proteins have been implicated in processes including vesicle fusion, autophagy, and actin regulation. They bind phospholipids and act as channels that mediate the transfer of lipids between membranes at organelle contact sites [, , ]. It has been proposed that members of this entry have the capacity to bind and likely transfer tens of glycerolipids at once. Yeast VPS13 acts at multiple cellular sites, namely the interface between mitochondria and the vacuole, on endosomes, on the nuclear-vacuole junction and the vacuole, depending on the carbon source and metabolic state. Most evidence showed that mammalian VPS13A, VPS13C and VPS13D localize at contacts between the ER and other organelles, i.e. VPS13A and VPS13D bridge the ER to mitochondria, VPS13C bridges the ER to late endosomes and lysosomes and VPS13B may localize to endosome-endosome contacts [, , ]. Mutations in human VPS13 proteins (VPS13A-D) cause different diseases such as Chorea-acanthocytosis, Cohen syndrome, Parkinson's disease, and spastic ataxia, respectively which suggests they have different functions [, ].
Protein Domain
Type: Domain
Description: This entry represents the VPS13 adaptor binding (VAB) domain, previously known as SHR-BD, found in VPS13 []. These proteins interact with membrane-specific adaptor proteins such as Ypt35, Spo71 and the mitochondrial membrane protein Mcp1, to be recruited to different membranes. This domain interacts with Ypt35 which recruits VPS13 to endosomal and vacuolar membranes, and with Mcp1 to target VPS13 at mitochondria []. In plants, this domain is found to be the region which interacts with SHR or the SHORT-ROOT transcription factor, a regulator of root-growth and asymmetric cell division that separates ground tissue into endodermis and cortex. The plant protein containing the SHR-BD is named SHRUBBY or SHBY () [].This domain likely adopts an elongated structure consisting of β-sheets. It has been described as a β-propeller/WD40-like structure [, ], however, based on structural models, it does not seem to have that 3D arrangement.VPS13 proteins have been implicated in processes including vesicle fusion, autophagy, and actin regulation. They bind phospholipids and act as channels that mediate the transfer of lipids between membranes at organelle contact sites [, , ]. It has been proposed that members of this entry have the capacity to bind and likely transfer tens of glycerolipids at once. Yeast VPS13 acts at multiple cellular sites, namely the interface between mitochondria and the vacuole, on endosomes, on the nuclear-vacuole junction and the vacuole, depending on the carbon source and metabolic state. Most evidence showed that mammalian VPS13A, VPS13C and VPS13D localize at contacts between the ER and other organelles, i.e. VPS13A and VPS13D bridge the ER to mitochondria, VPS13C bridges the ER to late endosomes and lysosomes and VPS13B may localize to endosome-endosome contacts [, , ]. Mutations in human VPS13 proteins (VPS13A-D) cause different diseases such as Chorea-acanthocytosis, Cohen syndrome, Parkinson's disease, and spastic ataxia, respectively which suggests they have different functions [, ].