|  Help  |  About  |  Contact Us

Search our database by keyword

- or -

Examples

  • Search this entire website. Enter identifiers, names or keywords for genes, diseases, strains, ontology terms, etc. (e.g. Pax6, Parkinson, ataxia)
  • Use OR to search for either of two terms (e.g. OR mus) or quotation marks to search for phrases (e.g. "dna binding").
  • Boolean search syntax is supported: e.g. Balb* for partial matches or mus AND NOT embryo to exclude a term

Search results 1 to 3 out of 3 for Mafg

Category restricted to ProteinDomain (x)

0.015s

Categories

Category: ProteinDomain
Type Details Score
Protein Domain
Type: Family
Description: Maf transcription factors form a distinct family of the basic leucine zipper (bZip) transcription factors []. The Maf family is divided into two subclasses, large Mafs and small Mafs (MafF, MafK []and MafG []). Both subclasses contain leucine-zipper motifs, which allow homodimerisation as well as heterodimerisation with a variety of other bZip proteins. Small Mafs can act as negative regulators of transcription by recruiting transcriptional repressors or by forming homodimers that can then displace active dimers. Small Mafs lack a transactivator domain, but they can also serve as transcriptional activators by dimerising with other (usually larger) basic-zipper proteins and recruiting them to specific DNA-binding sites. This entry represents MafG. The p45/MafG heterodimer plays a role in the regulation of erythropoiesis []and may be involved in signal transduction of extracellular H+ []. MAFG is up-regulated in smokers [].
Protein Domain
Type: Homologous_superfamily
Description: The DNA-binding domain of certain eukaryotic transcription factors displays a distinctive helix-turn-helix (HTH) motif. The MafG basic region-leucine zipper (bZIP) protein and the Caenorhabditis elegans Skn-1 transcription factor share this HTH motif. MafG is a member of the Maf family of proteins, which are a subgroup of bZIP proteins that function as transcriptional regulators of cellular differentiation. Mafs can form either homodimers, or heterodimers with other bZIP proteins through their leucine zipper domains. MafG proteins are small Mafs that lack a putative transactivation domain. The DNA-binding domain of MafG contains the conserved Maf extended homology region (EHR), which is not present in other bZIP proteins. The EHR together with the basic region are responsible for the DNA-binding specificity of Mafs. Skn-1 is a transcription factor that specifies mesodermal development in C. elegans. Skn-1 and MafG share a conserved DNA-binding motif, however Skn-1 lacks the leucine zipper dimerisation domain that is found in all bZIP proteins. Skn-1 acts as a monomer. The DNA-binding domains in MafG []and Skn-1 []share structural similarity, despite a sequence identity of only 25%. The domain fold consists of three (MafG) to four (Skn-1) helices, where the long C-terminal helix protrudes from the domain and binds to DNA. MafG lacks the N-terminal helix of Skn-1. A basic cluster of residues is present on the surface of the domain, which together with the amino acid sequence motif, NXXYAXXCR, forms a DNA-binding surface. MafG and Skn-1 may use a common DNA-binding mode. However, the involvement of helix 2 (H2) in DNA recognition differs between MafG and Skn-1, with two residues at the beginning of H2 in MafG contributing to the unique DNA-binding specificity of Mafs.
Protein Domain
Type: Family
Description: Maf transcription factors form a distinct family of the basic leucine zipper (bZip) transcription factors. The Maf family is divided into two subclasses, large Mafs and small Mafs (MafF, MafK []and MafG []). Both subclasses contain leucine-zipper motifs, which allow homodimerisation as well as heterodimerisation with a variety of other bZip proteins. Small Mafs can act as negative regulators of transcription by recruiting transcriptional repressors or by forming homodimers that can then displace active dimers. Small Mafs lack a transactivator domain, but they can also serve as transcriptional activators by dimerising with other (usually larger) basic-zipper proteins and recruiting them to specific DNA-binding sites.The small Mafs (MafF, MafG and MafK) appear to be crucial regulators of mammalian gene expression. Small Mafs are also involved in regulating stress response and detoxification pathways [].