|  Help  |  About  |  Contact Us

Search our database by keyword

- or -

Examples

  • Search this entire website. Enter identifiers, names or keywords for genes, diseases, strains, ontology terms, etc. (e.g. Pax6, Parkinson, ataxia)
  • Use OR to search for either of two terms (e.g. OR mus) or quotation marks to search for phrases (e.g. "dna binding").
  • Boolean search syntax is supported: e.g. Balb* for partial matches or mus AND NOT embryo to exclude a term

Search results 1 to 9 out of 9 for Il1a

Category restricted to ProteinDomain (x)

0.02s

Categories

Category: ProteinDomain
Type Details Score
Protein Domain
Type: Family
Description: S100A13 belongs to the S100 calcium-binding family. S100A13 is a requisite component of the fibroblast growth factor-1 (FGF-1) protein release complex and is involved in human tumorigenesis by interacting with FGF-1 and interleukin-1 []. It is required for the copper-dependent stress-induced export of IL1A and FGF1 []. It also plays a role in the export of proteins that lack a signal peptide and are secreted by an alternative pathway [].
Protein Domain
Type: Family
Description: Interleukin-1 alpha and interleukin-1 beta (IL-1 alpha and IL-1 beta) are cytokines that participate in the regulation of immune responses, inflammatory reactions, and hematopoiesis []. Two types of IL-1 receptor, each with three extracellular immunoglobulin (Ig)-like domains, limited sequence similarity (28%) and different pharmacological characteristics have been cloned from mouse and human cell lines: these have been termed type I and type II receptors []. The receptors both exist in transmembrane (TM) and soluble forms: the soluble IL-1 receptor is thought to be post-translationally derived from cleavage of the extracellular portion of the membrane receptors.Both IL-1 receptors appear to be well conserved in evolution, and map to thesame chromosomal location []. The receptors can both bind all three forms of IL-1 (IL-1 alpha, IL-1 beta and IL-1RA).The crystal structures of IL1A and IL1B []have been solved, showing them to share the same 12-stranded β-sheet structure as both the heparin binding growth factors and the Kunitz-type soybean trypsin inhibitors []. The β-sheets are arranged in 3 similar lobes around a central axis, 6 strands forming an anti-parallel β-barrel. Several regions, especially the loop between strands 4 and 5, have been implicated in receptor binding.The Vaccinia virus genes B15R and B18R each encode proteins with N-terminal hydrophobic sequences, possible sites for attachment of N-linked carbohydrate and a short C-terminal hydrophobic domain []. These propertiesare consistent with the mature proteins being either virion, cell surface or secretory glycoproteins. Protein sequence comparisons reveal that the gene products are related to each other (20% identity) and to the Ig superfamily. The highest degree of similarity is to the human and murine interleukin-1 receptors, although both proteins are related to a wide range of Ig superfamily members, including the interleukin-6 receptor. A novel method for virus immune evasion has been proposed in which the product of one or both of these proteins may bind interleukin-1 and/or interleukin-6, preventing these cytokines reaching their natural receptors []. A similar gene product from Cowpox virus (CPV) has also been shown to specifically bind murine IL-1 beta [].This entry represents Interleukin-1 receptor type 1 (IL1R1), the crystal structure of the soluble extracellular part of type-I IL1R complexed with IL1RA has been determined to 2.7A resolution []. The receptor structure is characterised by three Ig-like domains, of which domains 1 and 2 are tightly linked, while domain 3 is completely separate and connected by a flexible linker.
Protein Domain
Type: Family
Description: Interleukin-1 alpha and interleukin-1 beta (IL-1 alpha and IL-1 beta) are cytokines that participate in the regulation of immune responses, inflammatory reactions, and hematopoiesis []. Two types of IL-1 receptor, each with three extracellular immunoglobulin (Ig)-like domains, limited sequence similarity (28%) and different pharmacological characteristics have been cloned from mouse and human cell lines: these have been termed type I and type II receptors []. The receptors both exist in transmembrane (TM) and soluble forms: the soluble IL-1 receptor is thought to be post-translationally derived from cleavage of the extracellular portion of the membrane receptors.Both IL-1 receptors appear to be well conserved in evolution, and map to thesame chromosomal location []. The receptors can both bind all three forms of IL-1 (IL-1 alpha, IL-1 beta and IL-1RA).The crystal structures of IL1A and IL1B []have been solved, showing them to share the same 12-stranded β-sheet structure as both the heparin binding growth factors and the Kunitz-type soybean trypsin inhibitors []. The β-sheets are arranged in 3 similar lobes around a central axis, 6 strands forming an anti-parallel β-barrel. Several regions, especially the loop between strands 4 and 5, have been implicated in receptor binding.The Vaccinia virus genes B15R and B18R each encode proteins with N-terminal hydrophobic sequences, possible sites for attachment of N-linked carbohydrate and a short C-terminal hydrophobic domain []. These propertiesare consistent with the mature proteins being either virion, cell surface or secretory glycoproteins. Protein sequence comparisons reveal that the gene products are related to each other (20% identity) and to the Ig superfamily. The highest degree of similarity is to the human and murine interleukin-1 receptors, although both proteins are related to a wide range of Ig superfamily members, including the interleukin-6 receptor. A novel method for virus immune evasion has been proposed in which the product of one or both of these proteins may bind interleukin-1 and/or interleukin-6, preventing these cytokines reaching their natural receptors []. A similar gene product from Cowpox virus (CPV) has also been shown to specifically bind murine IL-1 beta [].The crystal structure of the soluble extracellular part of type-I IL1Rcomplexed with IL1RA has been determined to 2.7A resolution []. The receptor structure is characterised by three Ig-like domains, of whichdomains 1 and 2 are tightly linked, while domain 3 is completely separate and connected by a flexible linker.
Protein Domain
Type: Family
Description: Interleukin-1 alpha and interleukin-1 beta (IL-1 alpha and IL-1 beta) are cytokines that participate in the regulation of immune responses, inflammatory reactions, and hematopoiesis []. Two types of IL-1 receptor, each with three extracellular immunoglobulin (Ig)-like domains, limited sequence similarity (28%) and different pharmacological characteristics have been cloned from mouse and human cell lines: these have been termed type I and type II receptors []. The receptors both exist in transmembrane (TM) and soluble forms: the soluble IL-1 receptor is thought to be post-translationally derived from cleavage of the extracellular portion of the membrane receptors.Both IL-1 receptors appear to be well conserved in evolution, and map to thesame chromosomal location []. The receptors can both bind all three forms of IL-1 (IL-1 alpha, IL-1 beta and IL-1RA).The crystal structures of IL1A and IL1B []have been solved, showing them to share the same 12-stranded β-sheet structure as both the heparin binding growth factors and the Kunitz-type soybean trypsin inhibitors []. The β-sheets are arranged in 3 similar lobes around a central axis, 6 strands forming an anti-parallel β-barrel. Several regions, especially the loop between strands 4 and 5, have been implicated in receptor binding.The Vaccinia virus genes B15R and B18R each encode proteins with N-terminal hydrophobic sequences, possible sites for attachment of N-linked carbohydrate and a short C-terminal hydrophobic domain []. These propertiesare consistent with the mature proteins being either virion, cell surface or secretory glycoproteins. Protein sequence comparisons reveal that the gene products are related to each other (20% identity) and to the Ig superfamily. The highest degree of similarity is to the human and murine interleukin-1 receptors, although both proteins are related to a wide range of Ig superfamily members, including the interleukin-6 receptor. A novel method for virus immune evasion has been proposed in which the product of one or both of these proteins may bind interleukin-1 and/or interleukin-6, preventing these cytokines reaching their natural receptors []. A similar gene product from Cowpox virus (CPV) has also been shown to specifically bind murine IL-1 beta [].
Protein Domain
Type: Family
Description: Interleukin-1 alpha and interleukin-1 beta (IL-1 alpha and IL-1 beta) are cytokines that participate in the regulation of immune responses, inflammatory reactions, and hematopoiesis []. Two types of IL-1 receptor, each with three extracellular immunoglobulin (Ig)-like domains, limited sequence similarity (28%) and different pharmacological characteristics have been cloned from mouse and human cell lines: these have been termed type I and type II receptors []. The receptors both exist in transmembrane (TM) and soluble forms: the soluble IL-1 receptor is thought to be post-translationally derived from cleavage of the extracellular portion of the membrane receptors.Both IL-1 receptors appear to be well conserved in evolution, and map to thesame chromosomal location []. The receptors can both bind all three forms of IL-1 (IL-1 alpha, IL-1 beta and IL-1RA).The crystal structures of IL1A and IL1B []have been solved, showing them to share the same 12-stranded β-sheet structure as both the heparin binding growth factors and the Kunitz-type soybean trypsin inhibitors []. The β-sheets are arranged in 3 similar lobes around a central axis, 6 strands forming an anti-parallel β-barrel. Several regions, especially the loop between strands 4 and 5, have been implicated in receptor binding.The Vaccinia virus genes B15R and B18R each encode proteins with N-terminal hydrophobic sequences, possible sites for attachment of N-linked carbohydrate and a short C-terminal hydrophobic domain []. These propertiesare consistent with the mature proteins being either virion, cell surface or secretory glycoproteins. Protein sequence comparisons reveal that the gene products are related to each other (20% identity) and to the Ig superfamily. The highest degree of similarity is to the human and murine interleukin-1 receptors, although both proteins are related to a wide range of Ig superfamily members, including the interleukin-6 receptor. A novel method for virus immune evasion has been proposed in which the product of one or both of these proteins may bind interleukin-1 and/or interleukin-6, preventing these cytokines reaching their natural receptors []. A similar gene product from Cowpox virus (CPV) has also been shown to specifically bind murine IL-1 beta [].This entry represents IL-1 beta (IL1B)
Protein Domain
Type: Conserved_site
Description: Interleukin-1 alpha and interleukin-1 beta (IL-1 alpha and IL-1 beta) are cytokines that participate in the regulation of immune responses, inflammatory reactions, and hematopoiesis []. Two types of IL-1 receptor, each with three extracellular immunoglobulin (Ig)-like domains, limited sequence similarity (28%) and different pharmacological characteristics have been cloned from mouse and human cell lines: these have been termed type I and type II receptors []. The receptors both exist in transmembrane (TM) and soluble forms: the soluble IL-1 receptor is thought to be post-translationally derived from cleavage of the extracellular portion of the membrane receptors.Both IL-1 receptors appear to be well conserved in evolution, and map to thesame chromosomal location []. The receptors can both bind all three forms of IL-1 (IL-1 alpha, IL-1 beta and IL-1RA).The crystal structures of IL1A and IL1B []have been solved, showing them to share the same 12-stranded β-sheet structure as both the heparin binding growth factors and the Kunitz-type soybean trypsin inhibitors []. The β-sheets are arranged in 3 similar lobes around a central axis, 6 strands forming an anti-parallel β-barrel. Several regions, especially the loop between strands 4 and 5, have been implicated in receptor binding.The Vaccinia virus genes B15R and B18R each encode proteins with N-terminal hydrophobic sequences, possible sites for attachment of N-linked carbohydrate and a short C-terminal hydrophobic domain []. These propertiesare consistent with the mature proteins being either virion, cell surface or secretory glycoproteins. Protein sequence comparisons reveal that the gene products are related to each other (20% identity) and to the Ig superfamily. The highest degree of similarity is to the human and murine interleukin-1 receptors, although both proteins are related to a wide range of Ig superfamily members, including the interleukin-6 receptor. A novel method for virus immune evasion has been proposed in which the product of one or both of these proteins may bind interleukin-1 and/or interleukin-6, preventing these cytokines reaching their natural receptors []. A similar gene product from Cowpox virus (CPV) has also been shown to specifically bind murine IL-1 beta [].This entry represents the Interleukin-1 conserved region in the C-terminal section.
Protein Domain
Type: Family
Description: Interleukin-1 alpha and interleukin-1 beta (IL-1 alpha and IL-1 beta) are cytokines that participate in the regulation of immune responses, inflammatory reactions, and hematopoiesis []. Two types of IL-1 receptor, each with three extracellular immunoglobulin (Ig)-like domains, limited sequence similarity (28%) and different pharmacological characteristics have been cloned from mouse and human cell lines: these have been termed type I and type II receptors []. The receptors both exist in transmembrane (TM) and soluble forms: the soluble IL-1 receptor is thought to be post-translationally derived from cleavage of the extracellular portion of the membrane receptors.Both IL-1 receptors appear to be well conserved in evolution, and map to thesame chromosomal location []. The receptors can both bind all three forms of IL-1 (IL-1 alpha, IL-1 beta and IL-1RA).The crystal structures of IL1A and IL1B []have been solved, showing them to share the same 12-stranded β-sheet structure as both the heparin binding growth factors and the Kunitz-type soybean trypsin inhibitors []. The β-sheets are arranged in 3 similar lobes around a central axis, 6 strands forming an anti-parallel β-barrel. Several regions, especially the loop between strands 4 and 5, have been implicated in receptor binding.The Vaccinia virus genes B15R and B18R each encode proteins with N-terminal hydrophobic sequences, possible sites for attachment of N-linked carbohydrate and a short C-terminal hydrophobic domain []. These propertiesare consistent with the mature proteins being either virion, cell surface or secretory glycoproteins. Protein sequence comparisons reveal that the gene products are related to each other (20% identity) and to the Ig superfamily. The highest degree of similarity is to the human and murine interleukin-1 receptors, although both proteins are related to a wide range of Ig superfamily members, including the interleukin-6 receptor. A novel method for virus immune evasion has been proposed in which the product of one or both of these proteins may bind interleukin-1 and/or interleukin-6, preventing these cytokines reaching their natural receptors []. A similar gene product from Cowpox virus (CPV) has also been shown to specifically bind murine IL-1 beta [].This entry represents the IL-1 family alpha (IL1A).
Protein Domain
Type: Domain
Description: Interleukin-1 alpha and interleukin-1 beta (IL-1 alpha and IL-1 beta) are cytokines that participate in the regulation of immune responses, inflammatory reactions, and hematopoiesis []. Two types of IL-1 receptor, each with three extracellular immunoglobulin (Ig)-like domains, limited sequence similarity (28%) and different pharmacological characteristics have been cloned from mouse and human cell lines: these have been termed type I and type II receptors []. The receptors both exist in transmembrane (TM) and soluble forms: the soluble IL-1 receptor is thought to be post-translationally derived from cleavage of the extracellular portion of the membrane receptors.Both IL-1 receptors appear to be well conserved in evolution, and map to thesame chromosomal location []. The receptors can both bind all three forms of IL-1 (IL-1 alpha, IL-1 beta and IL-1RA).The crystal structures of IL1A and IL1B []have been solved, showing them to share the same 12-stranded β-sheet structure as both the heparin binding growth factors and the Kunitz-type soybean trypsin inhibitors []. The β-sheets are arranged in 3 similar lobes around a central axis, 6 strands forming an anti-parallel β-barrel. Several regions, especially the loop between strands 4 and 5, have been implicated in receptor binding.The Vaccinia virus genes B15R and B18R each encode proteins with N-terminal hydrophobic sequences, possible sites for attachment of N-linked carbohydrate and a short C-terminal hydrophobic domain []. These propertiesare consistent with the mature proteins being either virion, cell surface or secretory glycoproteins. Protein sequence comparisons reveal that the gene products are related to each other (20% identity) and to the Ig superfamily. The highest degree of similarity is to the human and murine interleukin-1 receptors, although both proteins are related to a wide range of Ig superfamily members, including the interleukin-6 receptor. A novel method for virus immune evasion has been proposed in which the product of one or both of these proteins may bind interleukin-1 and/or interleukin-6, preventing these cytokines reaching their natural receptors []. A similar gene product from Cowpox virus (CPV) has also been shown to specifically bind murine IL-1 beta [].The N-terminal of Interleukin-1 is approximately 115 amino acids long, it forms a propeptide that is cleaved off to release the active interleukin-1. This signature is for the propeptide.
Protein Domain
Type: Family
Description: Interleukin-1 alpha and interleukin-1 beta (IL-1 alpha and IL-1 beta) are cytokines that participate in the regulation of immune responses, inflammatory reactions, and hematopoiesis []. Two types of IL-1 receptor, each with three extracellular immunoglobulin (Ig)-like domains, limited sequence similarity (28%) and different pharmacological characteristics have been cloned from mouse and human cell lines: these have been termed type I and type II receptors []. The receptors both exist in transmembrane (TM) and soluble forms: the soluble IL-1 receptor is thought to be post-translationally derived from cleavage of the extracellular portion of the membrane receptors.Both IL-1 receptors appear to be well conserved in evolution, and map to thesame chromosomal location []. The receptors can both bind all three forms of IL-1 (IL-1 alpha, IL-1 beta and IL-1RA).The crystal structures of IL1A and IL1B []have been solved, showing them to share the same 12-stranded β-sheet structure as both the heparin binding growth factors and the Kunitz-type soybean trypsin inhibitors []. The β-sheets are arranged in 3 similar lobes around a central axis, 6 strands forming an anti-parallel β-barrel. Several regions, especially the loop between strands 4 and 5, have been implicated in receptor binding.The Vaccinia virus genes B15R and B18R each encode proteins with N-terminal hydrophobic sequences, possible sites for attachment of N-linked carbohydrate and a short C-terminal hydrophobic domain []. These propertiesare consistent with the mature proteins being either virion, cell surface or secretory glycoproteins. Protein sequence comparisons reveal that the gene products are related to each other (20% identity) and to the Ig superfamily. The highest degree of similarity is to the human and murine interleukin-1 receptors, although both proteins are related to a wide range of Ig superfamily members, including the interleukin-6 receptor. A novel method for virus immune evasion has been proposed in which the product of one or both of these proteins may bind interleukin-1 and/or interleukin-6, preventing these cytokines reaching their natural receptors []. A similar gene product from Cowpox virus (CPV) has also been shown to specifically bind murine IL-1 beta [].This entry represents Interleukin-1 receptor, type II, the mature type II IL-1 receptor consists of (i) a ligand binding portion comprising three Ig-like domains; (ii) a single TM domain; and (iii) a short cytoplasmic domain of 29 amino acids []. This contrasts with the ~215 amino acid cytoplasmic domain of the type I receptor, suggesting that the two IL-1 receptors may interact with different signal transduction pathways. The type II receptor is expressed in a number of different tissues, including both B and T lymphocytes, and can be induced in several cell types by treatment with phorbol ester. Both IL-1 receptors appear to be well conserved in evolution, and map to the same chromosomal location. Like the type I receptor, the human type II IL-1 receptor can bind all three forms of IL-1 (IL-1 alpha, IL-1 beta and IL-1RA) [].