|  Help  |  About  |  Contact Us

Search our database by keyword

- or -

Examples

  • Search this entire website. Enter identifiers, names or keywords for genes, diseases, strains, ontology terms, etc. (e.g. Pax6, Parkinson, ataxia)
  • Use OR to search for either of two terms (e.g. OR mus) or quotation marks to search for phrases (e.g. "dna binding").
  • Boolean search syntax is supported: e.g. Balb* for partial matches or mus AND NOT embryo to exclude a term

Search results 1 to 2 out of 2 for Nfx1

Category restricted to ProteinDomain (x)

0.014s

Categories

Category: ProteinDomain
Type Details Score
Protein Domain
Type: Family
Description: This family of transcription factors is conserved from yeast to human. It is named after human NF-X1, a transcription factor that regulates the expression of class II major histocompatibility complex (MHC) genes [, ]. The Drosophila homologue shuttle craft (STC) has been shown to be a DNA- or RNA-binding protein required for proper axon guidance in the central nervous system []and the yeast homologue FAP1 encodes a dosage suppressor of rapamycin toxicity [].
Protein Domain
Type: Domain
Description: Zinc finger (Znf) domains are relatively small protein motifs which contain multiple finger-like protrusions that make tandem contacts with their target molecule. Some of these domains bind zinc, but many do not; instead binding other metals such as iron, or no metal at all. For example, some family members form salt bridges to stabilise the finger-like folds. They were first identified as a DNA-binding motif in transcription factor TFIIIA from Xenopus laevis (African clawed frog), however they are now recognised to bind DNA, RNA, protein and/or lipid substrates [, , , , ]. Their binding properties depend on the amino acid sequence of the finger domains and of the linker between fingers, as well as on the higher-order structures and the number of fingers. Znf domains are often found in clusters, where fingers can have different binding specificities. There are many superfamilies of Znf motifs, varying in both sequence and structure. They display considerable versatility in binding modes, even between members of the same class (e.g. some bind DNA, others protein), suggesting that Znf motifs are stable scaffolds that have evolvedspecialised functions. For example, Znf-containing proteins function in gene transcription, translation, mRNA trafficking, cytoskeleton organisation, epithelial development, cell adhesion, protein folding, chromatin remodelling and zinc sensing, to name but a few []. Zinc-binding motifs are stable structures, and they rarely undergo conformational changes upon binding their target. This entry represents a domain presumed to be a zinc binding domain. The following pattern describes the zinc finger:C-X(1-6)-H-X-C-X3-C(H/C)-X(3-4)-(H/C)-X(1-10)-Cwhere X can be any amino acid, and numbers in brackets indicate the number of residues. The two position can be either His or Cys. This central cysteine-rich portion encodes the DNA-binding domain which is highly conserved in eukaryotes []. The NFX1 family of proteins may have additional roles mediated by protein-protein interactions regarding the reiterated RING finger motifs in this central domain which strongly suggest that NFX1 is a probable E3 ubiquitin protein ligase []. This domain is found in the human transcriptional repressor NK-X1, a repressor of HLA-DRA transcription []; the Drosophila shuttle craft protein, which plays an essential role during the late stages of embryonic neurogenesis and has been shown to be a DNA- or RNA-binding protein []; and the yeast FKBP12-associated protein 1 (FAP1) [].