|  Help  |  About  |  Contact Us

Search our database by keyword

- or -

Examples

  • Search this entire website. Enter identifiers, names or keywords for genes, diseases, strains, ontology terms, etc. (e.g. Pax6, Parkinson, ataxia)
  • Use OR to search for either of two terms (e.g. OR mus) or quotation marks to search for phrases (e.g. "dna binding").
  • Boolean search syntax is supported: e.g. Balb* for partial matches or mus AND NOT embryo to exclude a term

Search results 1 to 2 out of 2 for Casp8

Category restricted to ProteinDomain (x)

0.015s

Categories

Category: ProteinDomain
Type Details Score
Protein Domain
Type: Domain
Description: Astrocytic phosphoprotein PEA-15 is a multifunctional protein that is involved in different biological processes and regulates several signalling pathways []. It contains N-terminal death effector domain (DED) and a C-terminal tail with irregular structure []. Expression of PEA-15 oscillates throughout the cell cycle, and the loss of PEA15 accelerates cell cycle progression []. PEA-15 blocks Ras-mediated inhibition of integrin activation and modulates the ERK MAP kinase cascade []. It inhibits both TNFRSF6- and TNFRSF1A-mediated CASP8 activity and apoptosis []. It also functions as a tumour suppressor by triggering the DNA damage-induced G2/M checkpoint and inhibiting RAS-mediated transformation []. In humans PEA-15 is regarded as an important target for type 2 diabetes. PEA-15 overexpression impairs insulin regulation of glucose transport, and this is mediated by its interaction with the C-terminal D4 domain of phospholipase D1 (PLD1) and the consequent increase of protein kinase C-alpha activity []. This entry represents the Death Effector Domain (DED) of PEA15.
Protein Domain
Type: Family
Description: This group of sequences represent the p45 (45kDa) precursor of caspases, which can be processed to produce the active p20 (20kDa) and p10 (10kDa) subunits. Caspases (Cysteine-dependent ASPartyl-specific proteASE) are cysteine peptidases that belong to the MEROPS peptidase family C14 (caspase family, clan CD) based on the architecture of their catalytic dyad or triad []. Caspases are tightly regulated proteins that require zymogen activation to become active, and once active can be regulated by caspase inhibitors. Activated caspases act as cysteine proteases, using the sulphydryl group of a cysteine side chain for catalysing peptide bond cleavage at aspartyl residues in their substrates. The catalytic cysteine and histidine residues are on the p20 subunit after cleavage of the p45 precursor.Caspases are mainly involved in mediating cell death (apoptosis) [, , ]. They have two main roles within the apoptosis cascade: as initiators that trigger the cell death process, and as effectors of the process itself. Caspase-mediated apoptosis follows two main pathways, one extrinsic and the other intrinsic or mitochondrial-mediated. The extrinsic pathway involves the stimulation of various TNF (tumour necrosis factor) cell surface receptors on cells targeted to die by various TNF cytokines that are produced by cells such as cytotoxic T cells. The activated receptor transmits the signal to the cytoplasm by recruiting FADD, which forms a death-inducing signalling complex (DISC) with caspase-8. The subsequent activation of caspase-8 initiates the apoptosis cascade involving caspases 3, 4, 6, 7, 9 and 10. The intrinsic pathway arises from signals that originate within the cell as a consequence of cellular stress or DNA damage. The stimulation or inhibition of different Bcl-2 family receptors results in the leakage of cytochrome c from the mitochondria, and the formation of an apoptosome composed of cytochrome c, Apaf1 and caspase-9. The subsequent activation of caspase-9 initiates the apoptosis cascade involving caspases 3 and 7, among others. At the end of the cascade, caspases act on a variety of signal transduction proteins, cytoskeletal and nuclear proteins, chromatin-modifying proteins, DNA repair proteins and endonucleases that destroy the cell by disintegrating its contents, including its DNA. The different caspases have different domain architectures depending upon where they fit into the apoptosis cascades, however they all carry the catalytic p10 and p20 subunits.Caspases can have roles other than in apoptosis, such as caspase-1 (interleukin-1 beta convertase) (), which is involved in the inflammatory process. The activation of apoptosis can sometimes lead to caspase-1 activation, providing a link between apoptosis and inflammation, such as during the targeting of infected cells. Caspases may also be involved in cell differentiation [].There are non-peptidase homologues in the caspase family, such as CASP8 and FADD-like apoptosis regulator (CASH/c-FLIP), which suppresses death receptor induced apoptosis and TCR activation induced cell death by inhibiting caspase-8 activation [, , ].