|  Help  |  About  |  Contact Us

Search our database by keyword

- or -

Examples

  • Search this entire website. Enter identifiers, names or keywords for genes, diseases, strains, ontology terms, etc. (e.g. Pax6, Parkinson, ataxia)
  • Use OR to search for either of two terms (e.g. OR mus) or quotation marks to search for phrases (e.g. "dna binding").
  • Boolean search syntax is supported: e.g. Balb* for partial matches or mus AND NOT embryo to exclude a term

Search results 1 to 9 out of 9 for Taf10

Category restricted to ProteinDomain (x)

0.016s

Categories

Category: ProteinDomain
Type Details Score
Protein Domain
Type: Domain
Description: The TATA Binding Protein (TBP) Associated Factor 8 (TAF8) is one of several TAFs that bind TBP, and is involved in forming the Transcription Factor IID (TFIID) complex. TAF8 plays a role in the differentiation of preadipocyte fibroblasts to adipocytes; it is also required for the integration of TAF10 into the TAF complex. The mouse ortholog of TAF8 is called taube nuss protein (TBN), and is required for early embryonic development. TBN mutant mice exhibit disturbances in the balance between cell death and cell survival in the early embryo. TAF8 plays a role in the differentiation of preadipocyte fibroblasts to adipocytes; it is also required for the integration of TAF10 into the TAF complex. In yeast and human cells, TAFs have been found as components of other complexes besides TFIID. TAF8 is also a component of a small TAF complex (SMAT), which contains TAF8, TAF10 and SUPT7L. Several TAFs interact via histone-fold motifs. The histone fold (HFD) is the interaction motif involved in heterodimerization of the core histones and their assembly into nucleosome octamer. TAF8 contains an H4 related histone fold motif, and interacts with several subunits of TFIID, including TBP and the histone-fold protein TAF10. Currently, five HF-containing TAF pairs have been described or suggested to exist in TFIID: TAF6-TAF9, TAF4-TAF12, TAF11-TAF13, TAF8-TAF10 and TAF3-TAF10 [, , , , ].This entry represents the C-terminal region of subunit 8 (also known as TAF8) of the transcription factor TFIID []. The adjacent N-terminal region generally contains a histone fold domain (). This subunit is one of the key subunits of TFIID, being one of several general cofactors which are typically involved in gene activation to bring about the communication between gene-specific transcription factors and components of the general transcription machinery [].
Protein Domain
Type: Domain
Description: This entry represents the SET domain found in SETD7, an enzyme that specifically monomethylate Lys-4 of histone H3, thereby creating a specific tag for epigenetic transcriptional activation. Methylation of lysine residues in the N-terminal tails of histones is thought to represent an important component of the mechanism that regulates chromatin structure. SETD7 plays a central role in the transcriptional activation of genes such as collagenase and insulin. It is recruited by IPF1/PDX-1 to the insulin promoter, leading to activate transcription. SETD7 also has methyltransferase activity toward non-histone proteins, including TAF10 and p53/TP53. SETD7 monomethylates Lys-189 of TAF10, which increases the affinity of TAF10 for RNA polymerase II. SETD7 monomethylates Lys-372 of p53/TP53, which stabilises p53/TP53 and increases p53/TP53-mediated transcriptional activation [, ]. SETD7 also methylates non-histone proteins, including estrogen receptor alpha (ERa), suggesting it has a role in diverse biological processes. ERa methylation by Set7/9 stabilises ERa and activates its transcriptional activities, which are involved in the carcinogenesis of breast cancer. In a high-throughput screen, treatment of human breast cancer cells (MCF7 cells) with cyproheptadine, a Set7/9 inhibitor, decreased the expression and transcriptional activity of ERa, thereby inhibiting estrogen-dependent cell growth [, ].These enzymes contain a SET domain, which is necessary but not sufficient for histone methyltransferase activity []. Human SETD7 contains an N-terminal β-sheet domain in addition to the conserved SET domain []. Mutagenesis studies identified two residues in the C terminus of the protein that appear essential for catalytic activity toward lysine-4 of histone H3; cofactor AdoMet binds to this domain [].
Protein Domain
Type: Family
Description: This entry represents histone-lysine N-methyltransferase (SETD7 or SET7/9) (), which contains a SET domain []. This enzyme specifically monomethylate Lys-4 of histone H3, thereby creating a specific tag for epigenetic transcriptional activation. Methylation of lysine residues in the N-terminal tails of histones is thought to represent an important component of the mechanism that regulates chromatin structure. As such SETD7 plays a central role in the transcriptional activation of genes such as collagenase and insulin. It is recruited by IPF1/PDX-1 to the insulin promoter, leading to activate transcription. SETD7 also has methyltransferase activity toward non-histone proteins, including TAF10 and p53/TP53. SETD7 monomethylates Lys-189 of TAF10, which increases the affinity of TAF10 for RNA polymerase II. SETD7 monomethylates Lys-372 of p53/TP53, which stabilises p53/TP53 and increases p53/TP53-mediated transcriptional activation []. These enzymes contain a SET domain, which is necessary but not sufficient for histone methyltransferase activity []. Human SETD7 contains an N-terminal β-sheet domain in addition to the conserved SET domain []. Mutagenesis studies []identified two residues in the C terminus of the protein that appear essential for catalytic activity toward lysine-4 of histone H3; cofactor AdoMet binds to this domain.
Protein Domain
Type: Family
Description: SAGA-associated factor 29 (SGF29) is a chromatin reader and a component of the transcription regulatory histone acetylation (HAT) complexes SAGA and SLIK [, ]. In the SAGA complex, SGF29 binds histone H3 that has been methylated at Lys-4 (H3K4me), and preferably binds the trimethylated form (H3K4me3) []. SGF29 also acts as a boundary, preventing the spread of heterochromatin into neighbouring genes [].The transcription regulatory histone acetylation complex Spt-Ada-Gcn5 acetyltransferase (SAGA) is involved in RNA polymerase II-dependent transcriptional regulation of approximately 10% of yeast genes. SAGA preferentially acetylates histones H3 and H2B and deubiquitinates histone H2B []. SAGA is known as PCAF in vertebrates and PCAF acetylates nucleosomal histone H3 []. The SAGA complex consists of at least TRA1, CHD1, SPT7, TAF5, ADA3, SGF73, SPT20/ADA5, SPT8, TAF12, TAF6, HFI1/ADA1, UBP8, GCN5, ADA2, SPT3, SGF29, TAF10, TAF9, SGF11 and SUS1, and some of these components are present as two copies. The complex is built up from distinct modules, each of which has a separate function and crosslinks with either other proteins or other modules in the complex [].SLIK (SAGA-like) is a multi-subunit histone acetyltransferase complex that preferentially acetylates histones H3 and H2B and deubiquitinates histone H2B. It is an embellishment of the SAGA complex. The yeast SLIK complex consists of at least TRA1, CHD1, SPT7, CC TAF5, ADA3, SPT20, RTG2, TAF12, TAF6, HFI1, UBP8 (a deubiquitinase), GCN5, ADA2, SPT3, SGF29, TAF10 and TAF9 [, ].
Protein Domain
Type: Family
Description: This entry includes the ubiquitin carboxyl-terminal hydrolases 8 (UBP8; from Saccharomyces cerevisiae; MEROPS identifier C19.087). UBP8 is a component of the transcription regulatory histone acetylation (HAT) complexes SAGA and SLIK []. In SAGA and SLIK, UBP8 deubiquitinates histone H2B and this regulates transcription []. UBP8 has a zinc-binding domain with which it associates with the SAGA complex via the Sgf11 protein [].The transcription regulatory histone acetylation complex Spt-Ada-Gcn5 acetyltransferase (SAGA) is involved in RNA polymerase II-dependent transcriptional regulation of approximately 10% of yeast genes. SAGA preferentially acetylates histones H3 and H2B and deubiquitinates histone H2B []. SAGA is known as PCAF in vertebrates and PCAF acetylates nucleosomal histone H3 []. The SAGA complex consists of at least TRA1, CHD1, SPT7, TAF5, ADA3, SGF73, SPT20/ADA5, SPT8, TAF12, TAF6, HFI1/ADA1, UBP8, GCN5, ADA2, SPT3, SGF29, TAF10, TAF9, SGF11 and SUS1, and some of these components are present as two copies. The complex is built up from distinct modules, each of which has a separate function and crosslinks with either other proteins or other modules in the complex [].SLIK (SAGA-like) is a multi-subunit histone acetyltransferase complex that preferentially acetylates histones H3 and H2B and deubiquitinates histone H2B. It is an embellishment of the SAGA complex. The yeast SLIK complex consists of at least TRA1, CHD1, SPT7, CC TAF5, ADA3, SPT20, RTG2, TAF12, TAF6, HFI1, UBP8 (a deubiquitinase), GCN5, ADA2, SPT3, SGF29, TAF10 and TAF9 [, ].
Protein Domain
Type: Family
Description: Transcription initiation factor TFIID subunit 12 (TAF12) is a component of the DNA-binding general transcription factor complex TFIID []and the transcription regulatory histone acetylation (HAT) complexes SAGA [], SALSA []and SLIK [].The DNA-binding general transcription factor complex TFIID is central to the initiation of DNA-dependent RNA polymerase II transcription. TFIID is the only general transcription initiation factor that bind to the TATA box. The binding of TFIID to the TATA-box is the first step in the formation of a complex able to initiate transcription []. TFIID consists of the TATA binding protein (TBP) and 14 TBP-associated factors (TAFs). One copy of each TAF1, TAF2, TAF3, TAF7, TAF8, TAF11, TAF13, two copies of each TAF4, TAF5, TAF6, TAF9, TAF10, TAF12, and three copies of TAF14 [].The transcription regulatory histone acetylation complex Spt-Ada-Gcn5 acetyltransferase (SAGA) is involved in RNA polymerase II-dependent transcriptional regulation of approximately 10% of yeast genes. SAGA preferentially acetylates histones H3 and H2B and deubiquitinates histone H2B []. SAGA is known as PCAF in vertebrates and PCAF acetylates nucleosomal histone H3 []. The SAGA complex consists of at least TRA1, CHD1, SPT7, TAF5, ADA3, SGF73, SPT20/ADA5, SPT8, TAF12, TAF6, HFI1/ADA1, UBP8, GCN5, ADA2, SPT3, SGF29, TAF10, TAF9, SGF11 and SUS1, and some of these components are present as two copies. The complex is built up from distinct modules, each of which has a separate function and crosslinks with either other proteins or other modules in the complex [].SLIK (SAGA-like) is a multi-subunit histone acetyltransferase complex that preferentially acetylates histones H3 and H2B and deubiquitinates histone H2B. It is an embellishment of the SAGA complex. The yeast SLIK complex consists of at least TRA1, CHD1, SPT7, CC TAF5, ADA3, SPT20, RTG2, TAF12, TAF6, HFI1, UBP8 (a deubiquitinase), GCN5, ADA2, SPT3, SGF29, TAF10 and TAF9 [, ].The yeast SALSA complex is an altered form of the SAGA complex and consists of at least TRA1, SPT7 (C-terminal truncated form), TAF5, ADA3, SPT20, TAF12, TAF6, HFI1, GCN5, ADA2 and SPT3 [].
Protein Domain
Type: Family
Description: Transcription initiation factor TFIID subunit 6 (TAF6) is a component of the DNA-binding general transcription factor complex TFIID []and the regulatory transcription regulatory histone acetylation (HAT) complexes SAGA [], SALSA []and SLIK [].The DNA-binding general transcription factor complex TFIID is central to the initiation of DNA-dependent RNA polymerase II transcription. TFIID is the only general transcription initiation factor that bind to the TATA box. The binding of TFIID to the TATA-box is the first step in the formation of a complex able to initiate transcription []. TFIID consists of the TATA binding protein (TBP) and 14 TBP-associated factors (TAFs). One copy of each TAF1, TAF2, TAF3, TAF7, TAF8, TAF11, TAF13, two copies of each TAF4, TAF5, TAF6, TAF9, TAF10, TAF12, and three copies of TAF14 [].The transcription regulatory histone acetylation complex Spt-Ada-Gcn5 acetyltransferase (SAGA) is involved in RNA polymerase II-dependent transcriptional regulation of approximately 10% of yeast genes. SAGA preferentially acetylates histones H3 and H2B and deubiquitinates histone H2B []. SAGA is known as PCAF in vertebrates and PCAF acetylates nucleosomal histone H3 []. The SAGA complex consists of at least TRA1, CHD1, SPT7, TAF5, ADA3, SGF73, SPT20/ADA5, SPT8, TAF12, TAF6, HFI1/ADA1, UBP8, GCN5, ADA2, SPT3, SGF29, TAF10, TAF9, SGF11 and SUS1, and some of these components are present as two copies. The complex is built up from distinct modules, each of which has a separate function and crosslinks with either other proteins or other modules in the complex [].SLIK (SAGA-like) is a multi-subunit histone acetyltransferase complex that preferentially acetylates histones H3 and H2B and deubiquitinates histone H2B. It is an embellishment of the SAGA complex. The yeast SLIK complex consists of at least TRA1, CHD1, SPT7, CC TAF5, ADA3, SPT20, RTG2, TAF12, TAF6, HFI1, UBP8 (a deubiquitinase), GCN5, ADA2, SPT3, SGF29, TAF10 and TAF9 [, ].The yeast SALSA complex is an altered form of the SAGA complex and consists of at least TRA1, SPT7 (C-terminal truncated form), TAF5, ADA3, SPT20, TAF12, TAF6, HFI1, GCN5, ADA2 and SPT3 [].
Protein Domain
Type: Family
Description: This entry includes histone acetyltransferases GCN5, KAT2A and KAT2B (all of which are included in ). GCN5 acetylates histones H2B, H3 and H4, providing a specific tag for epigenetic transcription activation. GCN5 is a component of the transcription regulatory histone acetylation (HAT) complexes SAGA [], SLIK [], SALSA []and ADA []. Mammals have two paralogues: KAT2A (also known as GCN5) and KAT2B. KAT2A acetylates core histones to provide a specific tag for epigenetic transcription activation, but not nucleosome core particles. It also acetylates proteins such as CEBPB []. KAT2A is a component of the ATAC complex, which has acetyltransferase activity on histones H3 and H4 []. KAT2B (also known as P300/calcium-binding protein (CBP)-associated factor or PCAF) can acetylate the core histones H3 and H4 as well as nucleosome core particles and non-histone proteins such as ACLY [].The transcription regulatory histone acetylation complex Spt-Ada-Gcn5 acetyltransferase (SAGA) is involved in RNA polymerase II-dependent transcriptional regulation of approximately 10% of yeast genes. SAGA preferentially acetylates histones H3 and H2B and deubiquitinates histone H2B []. SAGA is known as PCAF in vertebrates and PCAF acetylates nucleosomal histone H3 []. The SAGA complex consists of at least TRA1, CHD1, SPT7, TAF5, ADA3, SGF73, SPT20/ADA5, SPT8, TAF12, TAF6, HFI1/ADA1, UBP8, GCN5, ADA2, SPT3, SGF29, TAF10, TAF9, SGF11 and SUS1, and some of these components are present as two copies. The complex is built up from distinct modules, each of which has a separate function and crosslinks with either other proteins or other modules in the complex [].SLIK (SAGA-like) is a multi-subunit histone acetyltransferase complex that preferentially acetylates histones H3 and H2B and deubiquitinates histone H2B. It is an embellishment of the SAGA complex. The yeast SLIK complex consists of at least TRA1, CHD1, SPT7, CC TAF5, ADA3, SPT20, RTG2, TAF12, TAF6, HFI1, UBP8 (a deubiquitinase), GCN5, ADA2, SPT3, SGF29, TAF10 and TAF9 [, ].The yeast SALSA complex is an altered form of the SAGA complex and consists of at least TRA1, SPT7 (C-terminal truncated form), TAF5, ADA3, SPT20, TAF12, TAF6, HFI1, GCN5, ADA2 and SPT3 [].The ADA complex is a transcription regulatory histone acetylation (HAT) complex. ADA preferentially acetylates nucleosomal histones H3 (at 'Lys-14' and 'Lys-18') and H2B. The complex consists of at least ADA2, ADA3, AHC1, and GCN5. AHC1 is required for the overall structural integrity of the ADA complex [].
Protein Domain
Type: Family
Description: Transcription initiation factor TFIID subunit 5 is a component of the DNA-binding general transcription factor complex TFIID []and the transcription regulatory histone acetylation (HAT) complexes SAGA [], SALSA []and SLIK []. In Schizosaccharomyces pombe, there is an additional subunit known as Taf73 []which is also a member of this fmaily.The DNA-binding general transcription factor complex TFIID is central to the initiation of DNA-dependent RNA polymerase II transcription. TFIID is the only general transcription initiation factor that bind to the TATA box. The binding of TFIID to the TATA-box is the first step in the formation of a complex able to initiate transcription []. TFIID consists of the TATA binding protein (TBP) and 14 TBP-associated factors (TAFs). One copyof each TAF1, TAF2, TAF3, TAF7, TAF8, TAF11, TAF13, two copies of each TAF4, TAF5, TAF6, TAF9, TAF10, TAF12, and three copies of TAF14 [].The transcription regulatory histone acetylation complex Spt-Ada-Gcn5 acetyltransferase (SAGA) is involved in RNA polymerase II-dependent transcriptional regulation of approximately 10% of yeast genes. SAGA preferentially acetylates histones H3 and H2B and deubiquitinates histone H2B []. SAGA is known as PCAF in vertebrates and PCAF acetylates nucleosomal histone H3 []. The SAGA complex consists of at least TRA1, CHD1, SPT7, TAF5, ADA3, SGF73, SPT20/ADA5, SPT8, TAF12, TAF6, HFI1/ADA1, UBP8, GCN5, ADA2, SPT3, SGF29, TAF10, TAF9, SGF11 and SUS1, and some of these components are present as two copies. The complex is built up from distinct modules, each of which has a separate function and crosslinks with either other proteins or other modules in the complex [].SLIK (SAGA-like) is a multi-subunit histone acetyltransferase complex that preferentially acetylates histones H3 and H2B and deubiquitinates histone H2B. It is an embellishment of the SAGA complex. The yeast SLIK complex consists of at least TRA1, CHD1, SPT7, CC TAF5, ADA3, SPT20, RTG2, TAF12, TAF6, HFI1, UBP8 (a deubiquitinase), GCN5, ADA2, SPT3, SGF29, TAF10 and TAF9 [, ].The yeast SALSA complex is an altered form of the SAGA complex and consists of at least TRA1, SPT7 (C-terminal truncated form), TAF5, ADA3, SPT20, TAF12, TAF6, HFI1, GCN5, ADA2 and SPT3 [].