|  Help  |  About  |  Contact Us

Search our database by keyword

Examples

  • Search this entire website. Enter identifiers, names or keywords for genes, diseases, strains, ontology terms, etc. (e.g. Pax6, Parkinson, ataxia)
  • Use OR to search for either of two terms (e.g. OR mus) or quotation marks to search for phrases (e.g. "dna binding").
  • Boolean search syntax is supported: e.g. Balb* for partial matches or mus AND NOT embryo to exclude a term

Search results 101 to 103 out of 103 for Dph2

<< First    < Previous  |  Next >    Last >>
0.015s
Type Details Score
Protein Domain
Type: Homologous_superfamily
Description: Diphthamide is the name given to a unique post-translationally modified histidine residue in archaeal and eukaryotic translation elongation factor 2. Thismodified histidine is target of diphtheria toxin, which inhibits eukaryotic protein synthesis by ADP-ribosylating diphthamide in EF2 [].The diphthamide synthesis DPH1/DPH2 enzymes which catalyse the first step in diphthamide biosynthesis. Archaeal DPHs are more similar to eukaryotic DPH1 than to DPH2 [].Available structural information on PhDph2 reveals that this enzyme is a homodimer and that each monomer comprises three domains which share the same overall fold. The basic domain fold is a four-stranded parallel β-sheet with three flanking α-helices (or two α-helices and one 3(10) helix in the case of domain 2). The two β-sheets in domain 1 and 2 each contain an additional β-strand that is antiparallel to the rest of the β-sheet. Domains 2 and 3 have two additional α-helices. Domain 1 of one monomer and domain 3 of the adjacent monomer form the dimer interface, creating an extended nine-stranded β-sheet. The domain folds and their arrangement resemble the structure of quinolinate synthase but the orientations of the domains with respect to each other are different in the two enzymes. Three conserved cysteine residues (Cys59, Cys163 and Cys287), each coming from a different structural domain, are clustered together in the centre of the PhDph2 monomers. All three cysteine residues are conserved in eukaryotic DPH1s. The first and third cysteine residues are conserved in eukaryotic DPH2s [].This superfamily represents the domain 2 found in diphthamide synthesis DPH1/DPH2 enzymes.
Protein Domain
Type: Homologous_superfamily
Description: Diphthamide is the name given to a unique post-translationally modified histidine residue in archaeal and eukaryotic translation elongation factor 2. This modified histidine is target of diphtheria toxin, which inhibits eukaryotic protein synthesis by ADP-ribosylating diphthamide in EF2 [].The diphthamide synthesis DPH1/DPH2 enzymes which catalyse the first step in diphthamide biosynthesis. Archaeal DPHs are more similar to eukaryotic DPH1 than to DPH2 [].Available structural information on PhDph2 reveals that this enzyme is a homodimer and that each monomer comprises three domains which share the same overall fold. The basic domain fold is a four-stranded parallel β-sheet with three flanking α-helices (or two α-helices and one 3(10) helix in the case of domain 2). The two β-sheets in domain 1 and 2 each contain an additional β-strand that is antiparallel to the rest of the β-sheet. Domains 2 and 3 have two additional α-helices. Domain 1 of one monomer and domain 3 of the adjacent monomer form the dimer interface, creating an extended nine-stranded β-sheet. The domain folds and their arrangement resemble the structure of quinolinate synthase but the orientations of the domains with respect to each other are different in the two enzymes. Three conserved cysteine residues (Cys59, Cys163 and Cys287), each coming from a different structural domain, are clustered together in the centre of the PhDph2 monomers. All three cysteine residues are conserved in eukaryotic DPH1s. The first and third cysteine residues are conserved in eukaryotic DPH2s [].This superfamily represents the domain 1 found in diphthamide synthesis DPH1/DPH2 enzymes.
Protein Domain
Type: Homologous_superfamily
Description: Diphthamide is the name given to a unique post-translationally modified histidine residue in archaeal and eukaryotic translation elongation factor 2. This modified histidine is target of diphtheria toxin, which inhibits eukaryotic protein synthesis by ADP-ribosylating diphthamide in EF2 [].The diphthamide synthesis DPH1/DPH2 enzymes which catalyse the first step in diphthamide biosynthesis. Archaeal DPHs are more similar to eukaryotic DPH1 than to DPH2 [].Available structural information on PhDph2 reveals that this enzyme is a homodimer and that each monomer comprises three domains which share the same overall fold. The basic domain fold is a four-stranded parallel β-sheet with three flanking α-helices (or two α-helices and one 3(10) helix in the case of domain 2). The two β-sheets in domain 1 and 2 each contain an additional β-strand that is antiparallel to the rest of the β-sheet. Domains 2 and 3 have two additional α-helices. Domain 1 of one monomer and domain 3 of the adjacent monomer form the dimer interface, creating an extended nine-stranded β-sheet. The domain folds and their arrangementresemble the structure of quinolinate synthase but the orientations of the domains with respect to each other are different in the two enzymes. Three conserved cysteine residues (Cys59, Cys163 and Cys287), each coming from a different structural domain, are clustered together in the centre of the PhDph2 monomers. All three cysteine residues are conserved in eukaryotic DPH1s. The first and third cysteine residues are conserved in eukaryotic DPH2s [].This superfamily represents the domain 3 found in diphthamide synthesis DPH1/DPH2 enzymes.