|  Help  |  About  |  Contact Us

Search our database by keyword

Examples

  • Search this entire website. Enter identifiers, names or keywords for genes, diseases, strains, ontology terms, etc. (e.g. Pax6, Parkinson, ataxia)
  • Use OR to search for either of two terms (e.g. OR mus) or quotation marks to search for phrases (e.g. "dna binding").
  • Boolean search syntax is supported: e.g. Balb* for partial matches or mus AND NOT embryo to exclude a term

Search results 101 to 170 out of 170 for Kcne3

<< First    < Previous  |  Next >    Last >>
0.022s
Type Details Score
Publication
First Author: Teng S
Year: 2003
Journal: Biochem Biophys Res Commun
Title: Novel gene hKCNE4 slows the activation of the KCNQ1 channel.
Volume: 303
Issue: 3
Pages: 808-13
Publication    
First Author: Phansalkar R
Year: 2021
Journal: Elife
Title: Coronary blood vessels from distinct origins converge to equivalent states during mouse and human development.
Volume: 10
Publication
First Author: Hu Z
Year: 2014
Journal: Circ Cardiovasc Genet
Title: Kcne2 deletion creates a multisystem syndrome predisposing to sudden cardiac death.
Volume: 7
Issue: 1
Pages: 33-42
Publication
First Author: Hagendorf S
Year: 2009
Journal: J Neurosci
Title: Homeostatic control of sensory output in basal vomeronasal neurons: activity-dependent expression of ether-à-go-go-related gene potassium channels.
Volume: 29
Issue: 1
Pages: 206-21
Publication
First Author: Rattner A
Year: 2013
Journal: Proc Natl Acad Sci U S A
Title: Endothelin-2 signaling in the neural retina promotes the endothelial tip cell state and inhibits angiogenesis.
Volume: 110
Issue: 40
Pages: E3830-9
Publication
First Author: Takase H
Year: 2012
Journal: Blood
Title: Genome-wide identification of endothelial cell-enriched genes in the mouse embryo.
Volume: 120
Issue: 4
Pages: 914-23
Publication
First Author: Menendez-Montes I
Year: 2016
Journal: Dev Cell
Title: Myocardial VHL-HIF Signaling Controls an Embryonic Metabolic Switch Essential for Cardiac Maturation.
Volume: 39
Issue: 6
Pages: 724-739
Publication
First Author: Uribe V
Year: 2014
Journal: Development
Title: Arid3b is essential for second heart field cell deployment and heart patterning.
Volume: 141
Issue: 21
Pages: 4168-81
Publication
First Author: Harrell MD
Year: 2007
Journal: Physiol Genomics
Title: Large-scale analysis of ion channel gene expression in the mouse heart during perinatal development.
Volume: 28
Issue: 3
Pages: 273-83
Publication
First Author: Lewandowski JP
Year: 2015
Journal: Dev Biol
Title: Spatiotemporal regulation of GLI target genes in the mammalian limb bud.
Volume: 406
Issue: 1
Pages: 92-103
Publication
First Author: Hoffman BG
Year: 2008
Journal: Genome Biol
Title: Identification of transcripts with enriched expression in the developing and adult pancreas.
Volume: 9
Issue: 6
Pages: R99
Publication        
First Author: Mouse Genome Informatics Scientific Curators
Year: 2001
Title: RIKEN Data Curation in Mouse Genome Informatics
Publication        
First Author: Mouse Genome Informatics Scientific Curators
Year: 2016
Title: Automatic assignment of GO terms using logical inference, based on on inter-ontology links
Publication      
First Author: International Knockout Mouse Consortium
Year: 2014
Journal: Database Download
Title: MGI download of modified allele data from IKMC and creation of new knockout alleles
Publication      
First Author: Velocigene
Year: 2008
Journal: MGI Direct Data Submission
Title: Alleles produced for the KOMP project by Velocigene (Regeneron Pharmaceuticals)
Publication      
First Author: International Mouse Strain Resource
Year: 2014
Journal: Database Download
Title: MGI download of germline transmission data for alleles from IMSR strain data
Publication        
First Author: Cyagen Biosciences Inc.
Year: 2022
Title: Cyagen Biosciences Website.
Publication      
First Author: Mouse Genome Informatics and the International Mouse Phenotyping Consortium (IMPC)
Year: 2014
Journal: Database Release
Title: Obtaining and Loading Phenotype Annotations from the International Mouse Phenotyping Consortium (IMPC) Database
Publication        
First Author: GOA curators
Year: 2016
Title: Automatic transfer of experimentally verified manual GO annotation data to orthologs using Ensembl Compara
Publication        
First Author: UniProt-GOA
Year: 2012
Title: Gene Ontology annotation based on UniProtKB/Swiss-Prot Subcellular Location vocabulary mapping, accompanied by conservative changes to GO terms applied by UniProt
Publication        
First Author: Mouse Genome Informatics Scientific Curators
Year: 2010
Title: Rat to Mouse ISO GO annotation transfer
Publication        
First Author: Mouse Genome Informatics Scientific Curators
Year: 2002
Title: Chromosome assignment of mouse genes using the Mouse Genome Sequencing Consortium (MGSC) assembly and the ENSEMBL Database
Publication
First Author: Carninci P
Year: 2005
Journal: Science
Title: The transcriptional landscape of the mammalian genome.
Volume: 309
Issue: 5740
Pages: 1559-63
Publication
First Author: Kawai J
Year: 2001
Journal: Nature
Title: Functional annotation of a full-length mouse cDNA collection.
Volume: 409
Issue: 6821
Pages: 685-90
Publication        
First Author: GemPharmatech
Year: 2020
Title: GemPharmatech Website.
Publication        
First Author: AgBase, BHF-UCL, Parkinson's UK-UCL, dictyBase, HGNC, Roslin Institute, FlyBase and UniProtKB curators
Year: 2011
Title: Manual transfer of experimentally-verified manual GO annotation data to orthologs by curator judgment of sequence similarity
Publication
First Author: Okazaki Y
Year: 2002
Journal: Nature
Title: Analysis of the mouse transcriptome based on functional annotation of 60,770 full-length cDNAs.
Volume: 420
Issue: 6915
Pages: 563-73
Publication        
First Author: Mouse Genome Informatics Scientific Curators
Year: 2010
Title: Human to Mouse ISO GO annotation transfer
Publication
First Author: Diez-Roux G
Year: 2011
Journal: PLoS Biol
Title: A high-resolution anatomical atlas of the transcriptome in the mouse embryo.
Volume: 9
Issue: 1
Pages: e1000582
Publication      
First Author: Mouse Genome Informatics Scientific Curators
Year: 2010
Journal: Database Download
Title: Mouse Microarray Data Integration in Mouse Genome Informatics, the Affymetrix GeneChip Mouse Genome U74 Array Platform (A, B, C v2).
Publication      
First Author: MGI Genome Annotation Group and UniGene Staff
Year: 2015
Journal: Database Download
Title: MGI-UniGene Interconnection Effort
Publication        
First Author: Mouse Genome Informatics Scientific Curators
Year: 2002
Title: Mouse Genome Informatics Computational Sequence to Gene Associations
Publication        
First Author: Marc Feuermann, Huaiyu Mi, Pascale Gaudet, Dustin Ebert, Anushya Muruganujan, Paul Thomas
Year: 2010
Title: Annotation inferences using phylogenetic trees
Publication      
First Author: Bairoch A
Year: 1999
Journal: Database Release
Title: SWISS-PROT Annotated protein sequence database
Publication        
First Author: Mouse Genome Informatics Scientific Curators
Year: 2005
Title: Obtaining and Loading Genome Assembly Coordinates from Ensembl Annotations
Publication        
First Author: Mouse Genome Informatics Scientific Curators
Year: 2005
Title: Obtaining and loading genome assembly coordinates from NCBI annotations
Publication      
First Author: Mouse Genome Informatics (MGI) and The National Center for Biotechnology Information (NCBI)
Year: 2010
Journal: Database Download
Title: Consensus CDS project
Publication      
First Author: Mouse Genome Informatics
Year: 2010
Journal: Database Release
Title: Protein Ontology Association Load.
Publication      
First Author: Mouse Genome Database and National Center for Biotechnology Information
Year: 2000
Journal: Database Release
Title: Entrez Gene Load
Publication      
First Author: Allen Institute for Brain Science
Year: 2004
Journal: Allen Institute
Title: Allen Brain Atlas: mouse riboprobes
Publication      
First Author: Mouse Genome Informatics Scientific Curators
Year: 2009
Journal: Database Download
Title: Mouse Microarray Data Integration in Mouse Genome Informatics, the Affymetrix GeneChip Mouse Gene 1.0 ST Array Platform
Publication      
First Author: Mouse Genome Informatics Group
Year: 2003
Journal: Database Procedure
Title: Automatic Encodes (AutoE) Reference
Publication      
First Author: Mouse Genome Informatics Scientific Curators
Year: 2009
Journal: Database Download
Title: Mouse Microarray Data Integration in Mouse Genome Informatics, the Affymetrix GeneChip Mouse Genome 430 2.0 Array Platform
Publication
First Author: Abbott GW
Year: 2001
Journal: Cell
Title: MiRP2 forms potassium channels in skeletal muscle with Kv3.4 and is associated with periodic paralysis.
Volume: 104
Issue: 2
Pages: 217-31
Publication
First Author: Schroeder BC
Year: 2000
Journal: Nature
Title: A constitutively open potassium channel formed by KCNQ1 and KCNE3.
Volume: 403
Issue: 6766
Pages: 196-9
Protein Domain
Type: Family
Description: Potassium channels are the most diverse group of the ion channel family [, ]. They are important in shaping the action potential, and in neuronal excitability and plasticity []. The potassium channel family is composed of several functionally distinct isoforms, which can be broadly separated into 2 groups []: the practically non-inactivating 'delayed' group and the rapidly inactivating 'transient' group.These are all highly similar proteins, with only small amino acid changes causing the diversity of the voltage-dependent gating mechanism, channel conductance and toxin binding properties. Each type of K+channel is activated by different signals and conditions depending on their type of regulation: some open in response to depolarisation of the plasma membrane; others in response to hyperpolarisation or an increase in intracellular calcium concentration; some can be regulated by binding of a transmitter, together with intracellular kinases; while others are regulated by GTP-binding proteins or other second messengers []. In eukaryotic cells, K+channels are involved in neural signalling and generation of the cardiac rhythm, act as effectors in signal transduction pathways involving G protein-coupled receptors (GPCRs) and may have a role in target cell lysis by cytotoxic T-lymphocytes []. In prokaryotic cells, they play a role in the maintenance of ionic homeostasis [].All K+channels discovered so far possess a core of alpha subunits, each comprising either one or two copies of a highly conserved pore loop domain (P-domain). The P-domain contains the sequence (T/SxxTxGxG), which has been termed the K+selectivity sequence. In families that contain one P-domain, four subunits assemble to form a selective pathway for K+across the membrane. However, it remains unclear how the 2 P-domain subunits assemble to form a selective pore. The functional diversity of these families can arise through homo- or hetero-associations of alpha subunits or association with auxiliary cytoplasmic beta subunits. K+channel subunits containing one pore domain can be assigned into one of two superfamilies: those that possess six transmembrane (TM) domains and those that possess only two TM domains. The six TM domain superfamily can be further subdivided into conserved gene families: the voltage-gated (Kv) channels; the KCNQ channels (originally known as KvLQT channels); the EAG-like K+channels; and three types of calcium (Ca)-activated K+channels (BK, IK and SK) []. The 2TM domain family comprises inward-rectifying K+channels. In addition, there are K+channel alpha-subunits that possess two P-domains. These are usually highly regulated K+selective leak channels.Two types of beta subunit (KCNE and KCNAB) are presently known to associate with voltage-gated alpha subunits (Kv, KCNQ and eag-like). However, not all combinations of alpha and beta subunits are possible. The KCNE family of K+ channel subunits are membrane glycoproteins that possess a single transmembrane (TM) domain. They share no structural relationship with the alpha subunit proteins, which possess pore forming domains. The subunits appear to have a regulatory function, modulating the kinetics and voltage dependence of the alpha subunits of voltage-dependent K+ channels. KCNE subunits are formed from short polypeptides of ~130 amino acids, and are divided into five subfamilies: KCNE1 (MinK/IsK), KCNE2 (MiRP1), KCNE3 (MiRP2), KCNE4 (MiRP3) and KCNE1L (AMMECR2). KCNE3 is known to associate with the pore forming subunits KCNQ1, KCNQ4,HERG and Kv3.4. KCNE3 forms complexes with Kv3.4 in skeletal muscle -KCNE3 mutations have been identified in families with skeletal muscledisorders []. In the intestine, KCNE3 associates with KCNQ1 to formchannels that are stimulated by cAMP and are thought to be involved insecretory diarrhoea and cystic fibrosis [].
Protein
Organism: Mus musculus/domesticus
Length: 103  
Fragment?: false
Protein
Organism: Mus musculus/domesticus
Length: 103  
Fragment?: false
DO Term
Publication
First Author: Tempel BL
Year: 1988
Journal: Nature
Title: Cloning of a probable potassium channel gene from mouse brain.
Volume: 332
Issue: 6167
Pages: 837-9
Publication
First Author: Perney TM
Year: 1991
Journal: Curr Opin Cell Biol
Title: The molecular biology of K+ channels.
Volume: 3
Issue: 4
Pages: 663-70
Publication
First Author: Luneau C
Year: 1991
Journal: FEBS Lett
Title: Shaw-like rat brain potassium channel cDNA's with divergent 3' ends.
Volume: 288
Issue: 1-2
Pages: 163-7
Publication
First Author: Attali B
Year: 1992
Journal: J Biol Chem
Title: Cloning, functional expression, and regulation of two K+ channels in human T lymphocytes.
Volume: 267
Issue: 12
Pages: 8650-7
Publication
First Author: Schwarz TL
Year: 1988
Journal: Nature
Title: Multiple potassium-channel components are produced by alternative splicing at the Shaker locus in Drosophila.
Volume: 331
Issue: 6152
Pages: 137-42
Publication
First Author: Stühmer W
Year: 1989
Journal: EMBO J
Title: Molecular basis of functional diversity of voltage-gated potassium channels in mammalian brain.
Volume: 8
Issue: 11
Pages: 3235-44
Publication
First Author: Miller C
Year: 2000
Journal: Genome Biol
Title: An overview of the potassium channel family.
Volume: 1
Issue: 4
Pages: REVIEWS0004
Publication
First Author: Piccini M
Year: 1999
Journal: Genomics
Title: KCNE1-like gene is deleted in AMME contiguous gene syndrome: identification and characterization of the human and mouse homologs.
Volume: 60
Issue: 3
Pages: 251-7
Protein
Organism: Mus musculus/domesticus
Length: 143  
Fragment?: false
Protein
Organism: Mus musculus/domesticus
Length: 170  
Fragment?: false
Protein
Organism: Mus musculus/domesticus
Length: 71  
Fragment?: false
Protein
Organism: Mus musculus/domesticus
Length: 64  
Fragment?: false
Protein
Organism: Mus musculus/domesticus
Length: 192  
Fragment?: false
Publication
First Author: McCrossan ZA
Year: 2009
Journal: J Membr Biol
Title: Regulation of the Kv2.1 potassium channel by MinK and MiRP1.
Volume: 228
Issue: 1
Pages: 1-14
Protein Domain
Type: Family
Description: Two types of beta subunit (KCNE and KCNAB) are presently known to associate with voltage-gated alpha subunits (Kv, KCNQ and eag-like). However, not all combinations of alpha and beta subunits are possible. The KCNE family of K+ channel subunits are membrane glycoproteins that possess a single transmembrane (TM) domain. They share no structural relationship with the alpha subunit proteins, which possess pore forming domains. The subunits appear to have a regulatory function, modulating the kinetics and voltage dependence of the alpha subunits of voltage-dependent K+ channels. KCNE subunits are formed from short polypeptides of ~130 amino acids, and are divided into five subfamilies: KCNE1 (MinK/IsK), KCNE2 (MiRP1), KCNE3 (MiRP2), KCNE4 (MiRP3) and KCNE1L (AMMECR2). Potassium channels are the most diverse group of the ion channel family [, ]. They are important in shaping the action potential, and in neuronal excitability and plasticity []. The potassium channel family is composed of several functionally distinct isoforms, which can be broadly separated into 2 groups []: the practically non-inactivating 'delayed' group and the rapidly inactivating 'transient' group.These are all highly similar proteins, with only small amino acid changes causing the diversity of the voltage-dependent gating mechanism, channel conductance and toxin binding properties. Each type of K+channel is activated by different signals and conditions depending on their type of regulation: some open in response to depolarisation of the plasma membrane; others in response to hyperpolarisation or an increase in intracellular calcium concentration; some can be regulated by binding of a transmitter, together with intracellular kinases; while others are regulated by GTP-binding proteins or other second messengers []. In eukaryotic cells, K+channels are involved in neural signalling and generation of the cardiac rhythm, act as effectors in signal transduction pathways involving G protein-coupled receptors (GPCRs) and may have a role in target cell lysis by cytotoxic T-lymphocytes []. In prokaryotic cells, they play a role in the maintenance of ionic homeostasis [].All K+channels discovered so far possess a core of alpha subunits, each comprising either one or two copies of a highly conserved pore loop domain (P-domain). The P-domain contains the sequence (T/SxxTxGxG), which has been termed the K+selectivity sequence. In families that contain one P-domain, four subunits assemble to form a selective pathway for K+across the membrane. However, it remains unclear how the 2 P-domain subunits assemble to form a selective pore. The functional diversity of these families can arise through homo- or hetero-associations of alpha subunits or association with auxiliary cytoplasmic beta subunits. K+channel subunits containing one pore domain can be assigned into one of two superfamilies: those that possess six transmembrane (TM) domains and those that possess only two TM domains. The six TM domain superfamily can be further subdivided into conserved gene families: the voltage-gated (Kv) channels; the KCNQ channels (originally known as KvLQT channels); the EAG-like K+channels; and three types of calcium (Ca)-activated K+channels (BK, IK and SK) []. The 2TM domain family comprises inward-rectifying K+channels. In addition, there are K+channel alpha-subunits that possess two P-domains. These are usually highly regulated K+selective leak channels.
Protein Domain
Type: Family
Description: KCNE1 (Potassium voltage-gated channel subfamily E member 1, also known as Mink) subunits associate with KCNQ1 alpha subunits to form channels that are responsible for the IkS currents that determine the duration of the action potential in cardiac muscle []. Mutations in both of the genes encoding these subunits cause an inherited disorder that increases the risk of death from cardiac arrhythmia (long QT syndrome type 1) and Jervell and Lange-Nielsen syndrome, associated with congenital deafness [].Two types of beta subunit (KCNE and KCNAB) are presently known to associate with voltage-gated alpha subunits (Kv, KCNQ and eag-like). However, not all combinations of alpha and beta subunits are possible. The KCNE family of K+ channel subunits are membrane glycoproteins that possess a single transmembrane (TM) domain. They share no structural relationship with the alpha subunit proteins, which possess pore forming domains. The subunits appear to have a regulatory function, modulating the kinetics and voltage dependence of the alpha subunits of voltage-dependent K+ channels. KCNE subunits are formed from short polypeptides of ~130 amino acids, and are divided into five subfamilies: KCNE1 (MinK/IsK), KCNE2 (MiRP1), KCNE3 (MiRP2), KCNE4 (MiRP3) and KCNE1L (AMMECR2). Potassium channels are the most diverse group of the ion channel family [, ]. They are important in shaping the action potential, and in neuronal excitability and plasticity []. The potassium channel family is composed of several functionally distinct isoforms, which can be broadly separated into 2 groups []: the practically non-inactivating 'delayed' group and the rapidly inactivating 'transient' group.These are all highly similar proteins, with only small amino acid changes causing the diversity of the voltage-dependent gating mechanism, channel conductance and toxin binding properties. Each type of K+channel is activated by different signals and conditions depending on their type of regulation: some open in response to depolarisation of the plasma membrane; others in response to hyperpolarisation or an increase in intracellular calcium concentration; some can be regulated by binding of a transmitter, together with intracellular kinases; while others are regulated by GTP-binding proteins or other second messengers []. In eukaryotic cells, K+channels are involved in neural signalling and generation of the cardiac rhythm, act as effectors in signal transduction pathways involving G protein-coupled receptors (GPCRs) and may have a role in target cell lysis by cytotoxic T-lymphocytes []. In prokaryotic cells, they play a role in the maintenance of ionic homeostasis [].All K+channels discovered so far possess a core of alpha subunits, each comprising either one or two copies of a highly conserved pore loop domain (P-domain). The P-domain contains the sequence (T/SxxTxGxG), which has been termed the K+selectivity sequence. In families that contain one P-domain, four subunits assemble to form a selective pathway for K+across the membrane. However, it remains unclear how the 2 P-domain subunits assemble to form a selective pore. The functional diversity of these families can arise through homo- or hetero-associations of alpha subunits or association with auxiliary cytoplasmic beta subunits. K+channel subunits containing one pore domain can be assigned into one of two superfamilies: those that possess six transmembrane (TM) domains and those that possess only two TM domains. The six TM domain superfamily can be further subdivided into conserved gene families: the voltage-gated (Kv) channels; the KCNQ channels (originally known as KvLQT channels); the EAG-like K+channels; and three types of calcium (Ca)-activated K+channels (BK, IK and SK) []. The 2TM domain family comprises inward-rectifying K+channels. In addition, there are K+channel alpha-subunits that possess two P-domains. These are usually highly regulated K+selective leak channels.
Protein Domain
Type: Family
Description: Potassium channels are the most diverse group of the ion channel family [, ]. They are important in shaping the action potential, and in neuronal excitability and plasticity []. The potassium channel family is composed of several functionally distinct isoforms, which can be broadly separated into 2 groups []: the practically non-inactivating 'delayed' group and the rapidly inactivating 'transient' group.These are all highly similar proteins, with only small amino acid changes causing the diversity of the voltage-dependent gating mechanism, channel conductance and toxin binding properties. Each type of K+channel is activated by different signals and conditions depending on their type of regulation: some open in response to depolarisation of the plasma membrane; others in response to hyperpolarisation or an increase in intracellular calcium concentration; some can be regulated by binding of a transmitter, together with intracellular kinases; while others are regulated by GTP-binding proteins or other second messengers []. In eukaryotic cells, K+channels are involved in neural signalling and generation of the cardiac rhythm, act as effectors in signal transduction pathways involving G protein-coupled receptors (GPCRs) and may have a role in target cell lysis by cytotoxic T-lymphocytes []. In prokaryotic cells, they play a role in the maintenance of ionic homeostasis [].All K+channels discovered so far possess a core of alpha subunits, each comprising either one or two copies of a highly conserved pore loop domain (P-domain). The P-domain contains the sequence (T/SxxTxGxG), which has been termed the K+selectivity sequence. In families that contain one P-domain, four subunits assemble to form a selective pathway for K+across the membrane. However, it remains unclear how the 2 P-domain subunits assemble to form a selective pore. The functional diversity of these families can arise through homo- or hetero-associations of alpha subunits or association with auxiliary cytoplasmic beta subunits. K+channel subunits containing one pore domain can be assigned into one of two superfamilies: those that possess six transmembrane (TM) domains and those that possess only two TM domains. The six TM domain superfamily can be further subdivided into conserved gene families: the voltage-gated (Kv) channels; the KCNQ channels (originally known as KvLQT channels); the EAG-like K+channels; and three types of calcium (Ca)-activated K+channels (BK, IK and SK) []. The 2TM domain family comprises inward-rectifying K+channels. In addition, there are K+channel alpha-subunits that possess two P-domains. These are usually highly regulated K+selective leak channels.Two types of beta subunit (KCNE and KCNAB) are presently known to associate with voltage-gated alpha subunits (Kv, KCNQ and eag-like). However, not all combinations of alpha and beta subunits are possible. The KCNE family of K+ channel subunits are membrane glycoproteins that possess a single transmembrane (TM) domain. They share no structural relationship with the alpha subunit proteins, which possess pore forming domains. The subunits appear to have a regulatory function, modulating the kinetics and voltage dependence of the alpha subunits of voltage-dependent K+ channels. KCNE subunits are formed from short polypeptides of ~130 amino acids, and are divided into five subfamilies: KCNE1 (MinK/IsK), KCNE2 (MiRP1), KCNE3 (MiRP2), KCNE4 (MiRP3) and KCNE1L (AMMECR2). KCNE2 subunits associate with the eag-like HERG alpha subunits, which arethe pore-forming subunits of cardiac IKr channels. Channels formed solelyfrom HERG subunits display similar properties to native IKr channels;however, they differ in their gating and single channel conductance. Channels formed from both KCNE2 and HERG exhibit properties that are identical to those seen in native IKr channels. Three mutations in the KCNE2gene are associated with long QT syndrome and ventricular fibrillation. These mutations result in channels that open slower and close more rapidly,the net effect being a reduced K+ current [].
Protein
Organism: Mus musculus/domesticus
Length: 129  
Fragment?: false
Protein
Organism: Mus musculus/domesticus
Length: 123  
Fragment?: false
Protein
Organism: Mus musculus/domesticus
Length: 129  
Fragment?: false
Protein
Organism: Mus musculus/domesticus
Length: 123  
Fragment?: false