|  Help  |  About  |  Contact Us

Search our database by keyword

Examples

  • Search this entire website. Enter identifiers, names or keywords for genes, diseases, strains, ontology terms, etc. (e.g. Pax6, Parkinson, ataxia)
  • Use OR to search for either of two terms (e.g. OR mus) or quotation marks to search for phrases (e.g. "dna binding").
  • Boolean search syntax is supported: e.g. Balb* for partial matches or mus AND NOT embryo to exclude a term

Search results 201 to 300 out of 309 for Trpc2

0.035s
Type Details Score
Publication
First Author: Seth M
Year: 2012
Journal: Dev Dyn
Title: Dynamic regulation of sarcoplasmic reticulum Ca(2+) stores by stromal interaction molecule 1 and sarcolipin during muscle differentiation.
Volume: 241
Issue: 4
Pages: 639-47
Publication
First Author: Yamazaki K
Year: 1998
Journal: Genomics
Title: Genetic mapping of mouse transient receptor potential (Trrp) genes responsible for capacitative calcium entry channels to chromosomes 3, 7, 9, and X.
Volume: 51
Issue: 2
Pages: 303-5
Publication  
First Author: Ramsey IS
Year: 2006
Journal: Annu Rev Physiol
Title: An introduction to TRP channels.
Volume: 68
Pages: 619-47
Publication
First Author: Asai Y
Year: 2010
Journal: J Assoc Res Otolaryngol
Title: A quantitative analysis of the spatiotemporal pattern of transient receptor potential gene expression in the developing mouse cochlea.
Volume: 11
Issue: 1
Pages: 27-37
Publication
First Author: De Clercq K
Year: 2021
Journal: Cell Mol Life Sci
Title: Mapping the expression of transient receptor potential channels across murine placental development.
Volume: 78
Issue: 11
Pages: 4993-5014
Publication
First Author: Fecher-Trost C
Year: 2019
Journal: J Bone Miner Res
Title: Maternal Transient Receptor Potential Vanilloid 6 (Trpv6) Is Involved In Offspring Bone Development.
Volume: 34
Issue: 4
Pages: 699-710
Publication
First Author: Lechner SG
Year: 2009
Journal: EMBO J
Title: Developmental waves of mechanosensitivity acquisition in sensory neuron subtypes during embryonic development.
Volume: 28
Issue: 10
Pages: 1479-91
Publication
First Author: Georgas K
Year: 2009
Journal: Dev Biol
Title: Analysis of early nephron patterning reveals a role for distal RV proliferation in fusion to the ureteric tip via a cap mesenchyme-derived connecting segment.
Volume: 332
Issue: 2
Pages: 273-86
Publication      
First Author: Lexicon Genetics Inc
Year: 2005
Journal: MGI Direct Data Submission
Title: NIH initiative supporting placement of Lexicon Genetics, Inc. mice into public repositories
Publication
First Author: Kawai J
Year: 2001
Journal: Nature
Title: Functional annotation of a full-length mouse cDNA collection.
Volume: 409
Issue: 6821
Pages: 685-90
Publication
First Author: Okazaki Y
Year: 2002
Journal: Nature
Title: Analysis of the mouse transcriptome based on functional annotation of 60,770 full-length cDNAs.
Volume: 420
Issue: 6915
Pages: 563-73
Publication
First Author: Willnow T
Year: 2005
Journal: Organogenesis
Title: The European renal genome project: an integrated approach towards understanding the genetics of kidney development and disease.
Volume: 2
Issue: 2
Pages: 42-7
Publication      
First Author: MGI and IMPC
Year: 2017
Journal: MGI Direct Data Submission
Title: MGI Curation of Endonuclease-Mediated Alleles (CRISPR) from the International Mouse Phenotyping Consortium (IMPC)
Publication        
First Author: Mouse Genome Informatics Scientific Curators
Year: 2001
Title: Gene Ontology Annotation by the MGI Curatorial Staff
Publication        
First Author: Mouse Genome Informatics Scientific Curators
Year: 2005
Title: Mouse Synonym Curation
Publication      
First Author: Lennon G
Year: 1999
Journal: Database Download
Title: WashU-HHMI Mouse EST Project
Publication      
First Author: Velocigene
Year: 2008
Journal: MGI Direct Data Submission
Title: Alleles produced for the KOMP project by Velocigene (Regeneron Pharmaceuticals)
Publication      
First Author: GUDMAP Consortium
Year: 2004
Journal: www.gudmap.org
Title: GUDMAP: the GenitoUrinary Development Molecular Anatomy Project
Publication        
First Author: Mouse Genome Informatics Scientific Curators
Year: 2001
Title: Gene Ontology Annotation by the MGI Curatorial Staff
Publication      
First Author: Mouse Genome Informatics and the International Mouse Phenotyping Consortium (IMPC)
Year: 2014
Journal: Database Release
Title: Obtaining and Loading Phenotype Annotations from the International Mouse Phenotyping Consortium (IMPC) Database
Publication
First Author: Magdaleno S
Year: 2006
Journal: PLoS Biol
Title: BGEM: an in situ hybridization database of gene expression in the embryonic and adult mouse nervous system.
Volume: 4
Issue: 4
Pages: e86
Publication        
First Author: Mouse Genome Informatics Scientific Curators
Year: 2003
Title: MGI Sequence Curation Reference
Publication        
First Author: MGD Nomenclature Committee
Year: 1995
Title: Nomenclature Committee Use
Publication
First Author: Zambrowicz BP
Year: 2003
Journal: Proc Natl Acad Sci U S A
Title: Wnk1 kinase deficiency lowers blood pressure in mice: a gene-trap screen to identify potential targets for therapeutic intervention.
Volume: 100
Issue: 24
Pages: 14109-14
Publication      
First Author: The Jackson Laboratory Mouse Radiation Hybrid Database
Year: 2004
Journal: Database Release
Title: Mouse T31 Radiation Hybrid Data Load
Publication
First Author: Diez-Roux G
Year: 2011
Journal: PLoS Biol
Title: A high-resolution anatomical atlas of the transcriptome in the mouse embryo.
Volume: 9
Issue: 1
Pages: e1000582
Publication      
First Author: Mouse Genome Informatics Scientific Curators
Year: 2010
Journal: Database Download
Title: Mouse Microarray Data Integration in Mouse Genome Informatics, the Affymetrix GeneChip Mouse Genome U74 Array Platform (A, B, C v2).
Publication        
First Author: Mouse Genome Informatics Scientific Curators
Year: 2002
Title: Mouse Genome Informatics Computational Sequence to Gene Associations
Publication        
First Author: Marc Feuermann, Huaiyu Mi, Pascale Gaudet, Dustin Ebert, Anushya Muruganujan, Paul Thomas
Year: 2010
Title: Annotation inferences using phylogenetic trees
Publication      
First Author: Bairoch A
Year: 1999
Journal: Database Release
Title: SWISS-PROT Annotated protein sequence database
Publication        
First Author: Mouse Genome Informatics Scientific Curators
Year: 2005
Title: Obtaining and Loading Genome Assembly Coordinates from Ensembl Annotations
Publication        
First Author: Mouse Genome Informatics Scientific Curators
Year: 2005
Title: Obtaining and loading genome assembly coordinates from NCBI annotations
Publication      
First Author: Mouse Genome Informatics (MGI) and The National Center for Biotechnology Information (NCBI)
Year: 2010
Journal: Database Download
Title: Consensus CDS project
Publication      
First Author: Mouse Genome Informatics
Year: 2010
Journal: Database Release
Title: Protein Ontology Association Load.
Publication      
First Author: Mouse Genome Database and National Center for Biotechnology Information
Year: 2000
Journal: Database Release
Title: Entrez Gene Load
Publication      
First Author: Allen Institute for Brain Science
Year: 2004
Journal: Allen Institute
Title: Allen Brain Atlas: mouse riboprobes
Publication      
First Author: Mouse Genome Informatics Scientific Curators
Year: 2009
Journal: Database Download
Title: Mouse Microarray Data Integration in Mouse Genome Informatics, the Affymetrix GeneChip Mouse Gene 1.0 ST Array Platform
Publication      
First Author: Mouse Genome Informatics Group
Year: 2003
Journal: Database Procedure
Title: Automatic Encodes (AutoE) Reference
Publication      
First Author: Mouse Genome Informatics Scientific Curators
Year: 2009
Journal: Database Download
Title: Mouse Microarray Data Integration in Mouse Genome Informatics, the Affymetrix GeneChip Mouse Genome 430 2.0 Array Platform
Protein
Organism: Mus musculus/domesticus
Length: 262  
Fragment?: false
Protein
Organism: Mus musculus/domesticus
Length: 213  
Fragment?: false
Protein
Organism: Mus musculus/domesticus
Length: 313  
Fragment?: false
Publication  
First Author: Frankenberg S
Year: 2011
Journal: BMC Mol Biol
Title: Identification of two distinct genes at the vertebrate TRPC2 locus and their characterisation in a marsupial and a monotreme.
Volume: 12
Pages: 39
Protein
Organism: Mus musculus/domesticus
Length: 1172  
Fragment?: false
Protein
Organism: Mus musculus/domesticus
Length: 886  
Fragment?: false
Protein
Organism: Mus musculus/domesticus
Length: 890  
Fragment?: false
Protein
Organism: Mus musculus/domesticus
Length: 1072  
Fragment?: false
Publication
First Author: Chu X
Year: 2005
Journal: Cell Calcium
Title: Identification of an N-terminal TRPC2 splice variant which inhibits calcium influx.
Volume: 37
Issue: 2
Pages: 173-82
Publication
First Author: Hofmann T
Year: 2002
Journal: Proc Natl Acad Sci U S A
Title: Subunit composition of mammalian transient receptor potential channels in living cells.
Volume: 99
Issue: 11
Pages: 7461-6
Publication  
First Author: Feng Y
Year: 2022
Journal: Int J Mol Sci
Title: DOT1L Methyltransferase Regulates Calcium Influx in Erythroid Progenitor Cells in Response to Erythropoietin.
Volume: 23
Issue: 9
Publication  
First Author: Eckstein E
Year: 2020
Journal: Mol Cell Neurosci
Title: Cyclic regulation of Trpm4 expression in female vomeronasal neurons driven by ovarian sex hormones.
Volume: 105
Pages: 103495
Publication
First Author: Chamero P
Year: 2017
Journal: Sci Rep
Title: Type 3 inositol 1,4,5-trisphosphate receptor is dispensable for sensory activation of the mammalian vomeronasal organ.
Volume: 7
Issue: 1
Pages: 10260
Publication  
First Author: Saraiva LR
Year: 2015
Journal: Sci Rep
Title: Hierarchical deconstruction of mouse olfactory sensory neurons: from whole mucosa to single-cell RNA-seq.
Volume: 5
Pages: 18178
Publication
First Author: Angoa-Pérez M
Year: 2015
Journal: PLoS One
Title: Brain serotonin signaling does not determine sexual preference in male mice.
Volume: 10
Issue: 2
Pages: e0118603
Publication
First Author: Hofmann T
Year: 1999
Journal: Nature
Title: Direct activation of human TRPC6 and TRPC3 channels by diacylglycerol.
Volume: 397
Issue: 6716
Pages: 259-63
Publication
First Author: Hu Y
Year: 2020
Journal: Hypertens Res
Title: High-salt intake increases TRPC3 expression and enhances TRPC3-mediated calcium influx and systolic blood pressure in hypertensive patients.
Volume: 43
Issue: 7
Pages: 679-687
Publication
First Author: Woo JS
Year: 2010
Journal: Biochem J
Title: S165F mutation of junctophilin 2 affects Ca2+ signalling in skeletal muscle.
Volume: 427
Issue: 1
Pages: 125-34
Protein Domain
Type: Family
Description: Transient receptor potential (TRP) channels can be described as tetramers formed by subunits with six transmembrane domains and containing cation-selective pores, which in several cases show high calcium permeability. The molecular architecture of TRP channels is reminiscent of voltage-gated channels and comprises six putative transmembrane segments (S1-S6), intracellular N- and C-termini, and a pore-forming reentrant loop between S5 and S6 [].TRP channels represent a superfamily conserved from worms to humans that comprise seven subfamilies []: TRPC (canonical), TRPV (vanilloid), TRPM (melastatin or long TRPs), TRPA (ankyrin, whose only member is Transient receptor potential cation channel subfamily A member 1, TrpA1), TRPP (polycystin), TRPML (mucolipin) and TRPN (Nomp-C homologues), which has a single member that can be found in worms, flies, and zebrafish. TRPs are classified essentially according to their primary amino acid sequence rather than selectivity or ligand affinity, due to their heterogeneous properties and complex regulation.TRP channels are involved in many physiological functions, ranging from pure sensory functions, such as pheromone signalling, taste transduction, nociception, and temperature sensation, over homeostatic functions, such as Ca2+ and Mg2+ reabsorption and osmoregulation, to many other motile functions, such as muscle contraction and vaso-motor control [].The classical or canonical TRPC family (formerly short-TRPs, STRPs) encompasses channels presenting a large number of different activation modes. Some are store-operated, whereas others are receptor-operated channels activated by the production of diacylglicerol or redox processes. TRPC proteins also control growth cone guidance in both mammalian and amphibian model systems. All seven channels of this family share the common property of activation through phospholipase C (PLC)-coupled receptors []. It is believed that functional TRPC channels are generated in situ by association of four TRPC proteins to form either homotetramers or heterotetramers [].On the basis of sequence similarity, TRPC channels can be subdivided into four subgroups group 1 (TRPC1), group 2 (TRPC2), group 3 (TRPC3, TRPC6 and TRPC7) and group 4 (TRPC4 and TRPC5) []. While TRPC1 and TRPC2 are almost unique, TRPC4 and TRPC5 share approx. 65% identity. TRPC3, 6 and 7 form a structural and functional subfamily sharing 70-80% identity at the amino acid level and their common sensitivity towards diacylglycerol (DAG).
Protein Domain
Type: Family
Description: Transient receptor potential (TRP) channels can be described as tetramers formed by subunits with six transmembrane domains and containing cation-selective pores, which in several cases show high calcium permeability. The molecular architecture of TRP channels is reminiscent of voltage-gated channels and comprises six putative transmembrane segments (S1-S6), intracellular N- and C-termini, and a pore-forming reentrant loop between S5 and S6 [].TRP channels represent a superfamily conserved from worms to humans that comprise seven subfamilies []: TRPC (canonical), TRPV (vanilloid), TRPM (melastatin or long TRPs), TRPA (ankyrin, whose only member is Transient receptor potential cation channel subfamily A member 1, TrpA1), TRPP (polycystin), TRPML (mucolipin) and TRPN (Nomp-C homologues), which has a single member that can be found in worms, flies, and zebrafish. TRPs are classified essentially according to their primary amino acid sequence rather than selectivity or ligand affinity, due to their heterogeneous properties and complex regulation.TRP channels are involved in many physiological functions, ranging from pure sensory functions, such as pheromone signalling, taste transduction, nociception, and temperature sensation, over homeostatic functions, such as Ca2+ and Mg2+ reabsorption and osmoregulation, to many other motile functions, such as muscle contraction and vaso-motor control [].The classical or canonical TRPC family (formerly short-TRPs, STRPs) encompasses channels presenting a large number of different activation modes. Some are store-operated, whereas others are receptor-operated channels activated by the production of diacylglicerol or redox processes. TRPC proteins also control growth cone guidance in both mammalian and amphibian model systems. All seven channels of this family share the common property of activation through phospholipase C (PLC)-coupled receptors []. It is believed that functional TRPC channels are generated in situ by association of four TRPC proteins to form either homotetramers or heterotetramers [].On the basis of sequence similarity, TRPC channels can be subdivided into four subgroups group 1 (TRPC1), group 2 (TRPC2), group 3 (TRPC3, TRPC6 and TRPC7) and group 4 (TRPC4 and TRPC5) []. While TRPC1 and TRPC2 are almost unique, TRPC4 and TRPC5 share approx. 65% identity. TRPC3, 6 and 7 form a structural and functional subfamily sharing 70-80% identity at the amino acid level and their common sensitivity towards diacylglycerol (DAG).
Protein Domain
Type: Family
Description: Transient receptor potential (TRP) channels can be described as tetramers formed by subunits with six transmembrane domains and containing cation-selective pores, which in several cases show high calcium permeability. The molecular architecture of TRP channels is reminiscent of voltage-gated channels and comprises six putative transmembrane segments (S1-S6), intracellular N- and C-termini, and a pore-forming reentrant loop between S5 and S6 [].TRP channels represent a superfamily conserved from worms to humans that comprise seven subfamilies []: TRPC (canonical), TRPV (vanilloid), TRPM (melastatin or long TRPs), TRPA (ankyrin, whose only member is Transient receptor potential cation channel subfamily A member 1, TrpA1), TRPP (polycystin), TRPML (mucolipin) and TRPN (Nomp-C homologues), which has a single member that can be found in worms, flies, and zebrafish. TRPs are classified essentially according to their primary amino acid sequence rather than selectivity or ligand affinity, due to their heterogeneous properties and complex regulation.TRP channels are involved in many physiological functions, ranging from pure sensory functions, such as pheromone signalling, taste transduction, nociception, and temperature sensation, over homeostatic functions, such as Ca2+ and Mg2+ reabsorption and osmoregulation, to many other motile functions, such as muscle contraction and vaso-motor control [].The classical or canonical TRPC family (formerly short-TRPs, STRPs) encompasses channels presenting a large number of different activation modes. Some are store-operated, whereas others are receptor-operated channels activated by the production of diacylglicerol or redox processes. TRPC proteins also control growth cone guidance in both mammalian and amphibian model systems. All seven channels of this family share the common property of activation through phospholipase C (PLC)-coupled receptors []. It is believed that functional TRPC channels are generated in situ by association of four TRPC proteins to form either homotetramers or heterotetramers [].On the basis of sequence similarity, TRPC channels can be subdivided into four subgroups group 1 (TRPC1), group 2 (TRPC2), group 3 (TRPC3, TRPC6 and TRPC7) and group 4 (TRPC4 and TRPC5) []. While TRPC1 and TRPC2 are almost unique, TRPC4 and TRPC5 share approx. 65% identity. TRPC3, 6 and 7 form a structural and functional subfamily sharing 70-80% identity at the amino acid level and their common sensitivity towards diacylglycerol (DAG).TRPC3, 6, and 7 interact physically and, upon coexpression, coassemble to form functional tetrameric channels [].TRPC3 is likely to be operated by a phosphatidylinositol second messenger system activated by receptor tyrosine kinases or G-protein coupled receptors. It is activated by diacylglycerol (DAG) in a membrane-delimited fashion, independently of protein kinase C, and by inositol 1,4,5-triphosphate receptors (ITPR) with bound IP3 [, ]. High levels of TRPC3 mRNA have been related to elevated salt intake and increased blood pressure [].
Protein Domain
Type: Family
Description: Transient receptor potential (TRP) channels can be described as tetramers formed by subunits with six transmembrane domains and containing cation-selective pores, which in several cases show high calcium permeability. The molecular architecture of TRP channels is reminiscent of voltage-gated channels and comprises six putative transmembrane segments (S1-S6), intracellular N- and C-termini, and a pore-forming reentrant loop between S5 and S6 [].TRP channels represent a superfamily conserved from worms to humans that comprise seven subfamilies []: TRPC (canonical), TRPV (vanilloid), TRPM (melastatin or long TRPs), TRPA (ankyrin, whose only member is Transient receptor potential cation channel subfamily A member 1, TrpA1), TRPP (polycystin), TRPML (mucolipin) and TRPN (Nomp-C homologues), which has a single member that can be found in worms, flies, and zebrafish. TRPs are classified essentially according to their primary amino acid sequence rather than selectivity or ligand affinity, due to their heterogeneous properties and complex regulation.TRP channels are involved in many physiological functions, ranging from pure sensory functions, such as pheromone signalling, taste transduction, nociception, and temperature sensation, over homeostatic functions, such as Ca2+ and Mg2+ reabsorption and osmoregulation, to many other motile functions, such as muscle contraction and vaso-motor control [].The classical or canonical TRPC family (formerly short-TRPs, STRPs) encompasses channels presenting a large number of different activation modes. Some are store-operated, whereas others are receptor-operated channels activated by the production of diacylglicerol or redox processes. TRPC proteins also control growth cone guidance in both mammalian and amphibian model systems. All seven channels of this family share the common property of activation through phospholipase C (PLC)-coupled receptors []. It is believed that functional TRPC channels are generated in situ by association of four TRPC proteins to form either homotetramers or heterotetramers [].On the basis of sequence similarity, TRPC channels can be subdivided into four subgroups group 1 (TRPC1), group 2 (TRPC2), group 3 (TRPC3, TRPC6 and TRPC7) and group 4 (TRPC4 and TRPC5) []. While TRPC1 and TRPC2 are almost unique, TRPC4 and TRPC5 share approx. 65% identity. TRPC3, 6 and 7 form a structural and functional subfamily sharing 70-80% identity at the amino acid level and their common sensitivity towards diacylglycerol (DAG).TRPC4 and TRPC5 are thought to be receptor-operated, Ca2+-permeable, nonselective cation channels. It is likely that heteromultimers of TRPC1 and TRPC4 or TRPC5 form receptor-operated nonselective cation channels in central neurones, and that TRPC4 contributes to nonselective cation channels in intestinal smooth muscle [].
Protein Domain
Type: Family
Description: Transient receptor potential (TRP) channels can be described as tetramers formed by subunits with six transmembrane domains and containing cation-selective pores, which in several cases show high calcium permeability. The molecular architecture of TRP channels is reminiscent of voltage-gated channels and comprises six putative transmembrane segments (S1-S6), intracellular N- and C-termini, and a pore-forming reentrant loop between S5 and S6 [].TRP channels represent a superfamily conserved from worms to humans that comprise seven subfamilies []: TRPC (canonical), TRPV (vanilloid), TRPM (melastatin or long TRPs), TRPA (ankyrin, whose only member is Transient receptor potential cation channel subfamily A member 1, TrpA1), TRPP (polycystin), TRPML (mucolipin) and TRPN (Nomp-C homologues), which has a single member that can be found in worms, flies, and zebrafish. TRPs are classified essentially according to their primary amino acid sequence rather than selectivity or ligand affinity, due to their heterogeneous properties and complex regulation.TRP channels are involved in many physiological functions, ranging from pure sensory functions, such as pheromone signalling, taste transduction, nociception, and temperature sensation, over homeostatic functions, such as Ca2+ and Mg2+ reabsorption and osmoregulation, to many other motile functions, such as muscle contraction and vaso-motor control [].The classical or canonical TRPC family (formerly short-TRPs, STRPs) encompasses channels presenting a large number of different activation modes. Some are store-operated, whereas others are receptor-operated channels activated by the production of diacylglicerol or redox processes. TRPC proteins also control growth cone guidance in both mammalian and amphibian model systems. All seven channels of this family share the common property of activation through phospholipase C (PLC)-coupled receptors []. It is believed that functional TRPC channels are generated in situ by association of four TRPC proteins to form either homotetramers or heterotetramers [].On the basis of sequence similarity, TRPC channels can be subdivided into four subgroups group 1 (TRPC1), group 2 (TRPC2), group 3 (TRPC3, TRPC6 and TRPC7) and group 4 (TRPC4 and TRPC5) []. While TRPC1 and TRPC2 are almost unique, TRPC4 and TRPC5 share approx. 65% identity. TRPC3, 6 and 7 form a structural and functional subfamily sharing 70-80% identity at the amino acid level and their common sensitivity towards diacylglycerol (DAG).TRPC4 and TRPC5 are thought to be receptor-operated, Ca2+-permeable, nonselective cation channels. It is likely that heteromultimers of TRPC1 and TRPC4 or TRPC5 form receptor-operated nonselective cation channels in central neurones, and that TRPC4 contributes to nonselective cation channels in intestinal smooth muscle [].
Protein Domain
Type: Family
Description: Transient receptor potential (TRP) channels can be described as tetramers formed by subunits with six transmembrane domains and containing cation-selective pores, which in several cases show high calcium permeability. The molecular architecture of TRP channels is reminiscent of voltage-gated channels and comprises six putative transmembrane segments (S1-S6), intracellular N- and C-termini, and a pore-forming reentrant loop between S5 and S6 [].TRP channels represent a superfamily conserved from worms to humans that comprise seven subfamilies []: TRPC (canonical), TRPV (vanilloid), TRPM (melastatin or long TRPs), TRPA (ankyrin, whose only member is Transient receptor potential cation channel subfamily A member 1, TrpA1), TRPP (polycystin), TRPML (mucolipin) and TRPN (Nomp-C homologues), which has a single member that can be found in worms, flies, and zebrafish. TRPs are classified essentially according to their primary amino acid sequence rather than selectivity or ligand affinity, due to their heterogeneous properties and complex regulation.TRP channels are involved in many physiological functions, ranging from pure sensory functions, such as pheromone signalling, taste transduction, nociception, and temperature sensation, over homeostatic functions, such as Ca2+ and Mg2+ reabsorption and osmoregulation, to many other motile functions, such as muscle contraction and vaso-motor control [].The classical or canonical TRPC family (formerly short-TRPs, STRPs) encompasses channels presenting a large number of different activation modes. Some are store-operated, whereas others are receptor-operated channels activated by the production of diacylglicerol or redox processes. TRPC proteins also control growth cone guidance in both mammalian and amphibian model systems. All seven channels of this family share the common property of activation through phospholipase C (PLC)-coupled receptors []. It is believed that functional TRPC channels are generated in situ by association of four TRPC proteins to form either homotetramers or heterotetramers [].On the basis of sequence similarity, TRPC channels can be subdivided into four subgroups group 1 (TRPC1), group 2 (TRPC2), group 3 (TRPC3, TRPC6 and TRPC7) and group 4 (TRPC4 and TRPC5) []. While TRPC1 and TRPC2 are almost unique, TRPC4 and TRPC5 share approx. 65% identity. TRPC3, 6 and 7 form a structural and functional subfamily sharing 70-80% identity at the amino acid level and their common sensitivity towards diacylglycerol (DAG).TRPC3, 6, and 7 interact physically and, upon coexpression, coassemble to form functional tetrameric channels [].
Protein Domain
Type: Family
Description: Transient receptor potential (TRP) channels can be described as tetramers formed by subunits with six transmembrane domains and containing cation-selective pores, which in several cases show high calcium permeability. The molecular architecture of TRP channels is reminiscent of voltage-gated channels and comprises six putative transmembrane segments (S1-S6), intracellular N- and C-termini, and a pore-forming reentrant loop between S5 and S6 [].TRP channels represent a superfamily conserved from worms to humans that comprise seven subfamilies []: TRPC (canonical), TRPV (vanilloid), TRPM (melastatin or long TRPs), TRPA (ankyrin, whose only member is Transient receptor potential cation channel subfamily A member 1, TrpA1), TRPP (polycystin), TRPML (mucolipin) and TRPN (Nomp-C homologues), which has a single member that can be found in worms, flies, and zebrafish. TRPs are classified essentially according to their primary amino acid sequence rather than selectivity or ligand affinity, due to their heterogeneous properties and complex regulation.TRP channels are involved in many physiological functions, ranging from pure sensory functions, such as pheromone signalling, taste transduction, nociception, and temperature sensation, over homeostatic functions, such as Ca2+ and Mg2+ reabsorption and osmoregulation, to many other motile functions, such as muscle contraction and vaso-motor control [].The classical or canonical TRPC family (formerly short-TRPs, STRPs) encompasses channels presenting a large number of different activation modes. Some are store-operated, whereas others are receptor-operated channels activated by the production of diacylglicerol or redox processes. TRPC proteins also control growth cone guidance in both mammalian and amphibian model systems. All seven channels of this family share the common property of activation through phospholipase C (PLC)-coupled receptors []. It is believed that functional TRPC channels are generated in situ by association of four TRPC proteins to form either homotetramers or heterotetramers [].On the basis of sequence similarity, TRPC channels can be subdivided into four subgroups group 1 (TRPC1), group 2 (TRPC2), group 3 (TRPC3, TRPC6 and TRPC7) and group 4 (TRPC4 and TRPC5) []. While TRPC1 and TRPC2 are almost unique, TRPC4 and TRPC5 share approx. 65% identity. TRPC3, 6 and 7 form a structural and functional subfamily sharing 70-80% identity at the amino acid level and their common sensitivity towards diacylglycerol (DAG).TRPC3, 6, and 7 interact physically and, upon coexpression, coassemble to form functional tetrameric channels [].
Publication
First Author: Plant TD
Year: 2003
Journal: Cell Calcium
Title: TRPC4 and TRPC5: receptor-operated Ca2+-permeable nonselective cation channels.
Volume: 33
Issue: 5-6
Pages: 441-50
Publication
First Author: Dietrich A
Year: 2005
Journal: Naunyn Schmiedebergs Arch Pharmacol
Title: Functional characterization and physiological relevance of the TRPC3/6/7 subfamily of cation channels.
Volume: 371
Issue: 4
Pages: 257-65
Publication
First Author: Montell C
Year: 2002
Journal: Mol Cell
Title: A unified nomenclature for the superfamily of TRP cation channels.
Volume: 9
Issue: 2
Pages: 229-31
Protein
Organism: Mus musculus/domesticus
Length: 105  
Fragment?: true
Protein
Organism: Mus musculus/domesticus
Length: 255  
Fragment?: true
Protein
Organism: Mus musculus/domesticus
Length: 783  
Fragment?: true
Publication
First Author: Gaudet R
Year: 2008
Journal: J Physiol
Title: TRP channels entering the structural era.
Volume: 586
Issue: 15
Pages: 3565-75
Publication
First Author: Latorre R
Year: 2009
Journal: Q Rev Biophys
Title: Structure-functional intimacies of transient receptor potential channels.
Volume: 42
Issue: 3
Pages: 201-46
Publication
First Author: Gees M
Year: 2010
Journal: Cold Spring Harb Perspect Biol
Title: The role of transient receptor potential cation channels in Ca2+ signaling.
Volume: 2
Issue: 10
Pages: a003962
Protein
Organism: Mus musculus/domesticus
Length: 862  
Fragment?: false
Protein
Organism: Mus musculus/domesticus
Length: 793  
Fragment?: false
Protein
Organism: Mus musculus/domesticus
Length: 836  
Fragment?: false
Protein
Organism: Mus musculus/domesticus
Length: 930  
Fragment?: false
Protein
Organism: Mus musculus/domesticus
Length: 975  
Fragment?: false
Protein
Organism: Mus musculus/domesticus
Length: 974  
Fragment?: false
Protein
Organism: Mus musculus/domesticus
Length: 975  
Fragment?: false
Protein
Organism: Mus musculus/domesticus
Length: 836  
Fragment?: false
Protein
Organism: Mus musculus/domesticus
Length: 406  
Fragment?: false
Protein
Organism: Mus musculus/domesticus
Length: 746  
Fragment?: true
Protein
Organism: Mus musculus/domesticus
Length: 862  
Fragment?: false
Protein
Organism: Mus musculus/domesticus
Length: 380  
Fragment?: true
Protein
Organism: Mus musculus/domesticus
Length: 261  
Fragment?: true
Protein
Organism: Mus musculus/domesticus
Length: 861  
Fragment?: false
Protein
Organism: Mus musculus/domesticus
Length: 432  
Fragment?: false
Protein
Organism: Mus musculus/domesticus
Length: 1264  
Fragment?: false
Protein
Organism: Mus musculus/domesticus
Length: 861  
Fragment?: false
Protein
Organism: Mus musculus/domesticus
Length: 974  
Fragment?: false
Protein
Organism: Mus musculus/domesticus
Length: 808  
Fragment?: false
Protein
Organism: Mus musculus/domesticus
Length: 400  
Fragment?: false
Protein
Organism: Mus musculus/domesticus
Length: 880  
Fragment?: false
Protein
Organism: Mus musculus/domesticus
Length: 801  
Fragment?: false
Protein
Organism: Mus musculus/domesticus
Length: 836  
Fragment?: false
Protein
Organism: Mus musculus/domesticus
Length: 835  
Fragment?: true
Protein
Organism: Mus musculus/domesticus
Length: 1119  
Fragment?: false
Protein
Organism: Mus musculus/domesticus
Length: 807  
Fragment?: false
Protein
Organism: Mus musculus/domesticus
Length: 451  
Fragment?: false