|  Help  |  About  |  Contact Us

Search our database by keyword

Examples

  • Search this entire website. Enter identifiers, names or keywords for genes, diseases, strains, ontology terms, etc. (e.g. Pax6, Parkinson, ataxia)
  • Use OR to search for either of two terms (e.g. OR mus) or quotation marks to search for phrases (e.g. "dna binding").
  • Boolean search syntax is supported: e.g. Balb* for partial matches or mus AND NOT embryo to exclude a term

Search results 101 to 112 out of 112 for Mtmr4

<< First    < Previous  |  Next >    Last >>
0.018s
Type Details Score
Protein Domain
Type: Domain
Description: Myotubularin-related protein 4 (MTMR4) is a member of the myotubularin (MTM) family. It is the only family member that possesses a FYVE domain (a zinc finger domain) at its C terminus []. MTMR4 has dual-specificity phosphatase activity []; some studies have shown that it can dephosphorylate PI3P or PI(3,5)P2, suggesting that MTMR4 is also a lipid phosphatase []. MTMR4 has a unique distribution to endosomes []and has been shown to function in early and recycling endosomes [, ]. MTMR4 attenuates TGF-beta signalling by dephosphorylating intracellular signalling mediator R-Smads []. Similarly, it acts as a negative modulator for the homeostasis of bone morphogenetic proteins (BMPs) signalling [].Both MTMR3 and MTMR4 contain a N-terminal PH-GRAM domain, a Rac-induced recruitment domain (RID) domain, an active PTP domain, a SET-interaction domain, a coiled-coil region, and a C-terminal lipid-binding FYVE domain which binds phosphotidylinositol-3-phosphate. Myotubularin-related proteins are a subfamily of protein tyrosine phosphatases (PTPs) that dephosphorylate D3-phosphorylated inositol lipids. Mutations in this family cause the human neuromuscular disorders myotubular myopathy and type 4B Charcot-Marie-Tooth syndrome []. Six of the 13 MTMRs (MTMRs 5, 9-13) contain naturally occurring substitutions of residues required for catalysis by PTP family enzymes. Although these proteins are predicted to be enzymatically inactive, they are thought to function as antagonists of endogenous phosphatase activity or interaction modules []. The GRAM domain, found in myotubularins, glucosyltransferases, and other putative membrane-associated proteins, is part of a larger motif with a pleckstrin homology (PH) domain fold []. This entry represents the PH-GRAM domain of myotubularin-related protein 4.
Publication
First Author: Begley MJ
Year: 2005
Journal: Curr Opin Struct Biol
Title: The structure and regulation of myotubularin phosphatases.
Volume: 15
Issue: 6
Pages: 614-20
Publication
First Author: Lorenzo O
Year: 2005
Journal: J Cell Sci
Title: Analysis of phosphoinositide binding domain properties within the myotubularin-related protein MTMR3.
Volume: 118
Issue: Pt 9
Pages: 2005-12
Protein Domain
Type: Domain
Description: MTMR3 is a member of the myotubularin dual specificity protein phosphatase gene family. MTMR3 binds to phosphoinositide lipids through its PH-GRAM domain, and can hydrolyze phosphatidylinositol(3)-phosphate and phosphatidylinositol(3,5)-biphosphate in vitro []. The protein can self-associate and also form heteromers with MTMR4 [].Both MTMR3 and MTMR4 contain a N-terminal PH-GRAM domain, a Rac-induced recruitment domain (RID) domain, an active PTP domain, a SET-interaction domain, a coiled-coil region, and a C-terminal lipid-binding FYVE domain which binds phosphotidylinositol-3-phosphate. Myotubularin-related proteins are a subfamily of protein tyrosine phosphatases (PTPs) that dephosphorylate D3-phosphorylated inositol lipids. Mutations in this family cause the human neuromuscular disorders myotubular myopathy and type 4B Charcot-Marie-Tooth syndrome []. Six of the 13 MTMRs (MTMRs 5, 9-13) contain naturally occurring substitutions of residues required for catalysis by PTP family enzymes. Although these proteins are predicted to be enzymatically inactive, they are thought to function as antagonists of endogenous phosphatase activity or interaction modules []. This entry represents the PH-GRAM domain of myotubularin-related protein 3.
Strain
Attribute String: mutant strain, targeted mutation, endonuclease-mediated mutation
Publication
First Author: Robinson FL
Year: 2005
Journal: J Biol Chem
Title: The phosphoinositide-3-phosphatase MTMR2 associates with MTMR13, a membrane-associated pseudophosphatase also mutated in type 4B Charcot-Marie-Tooth disease.
Volume: 280
Issue: 36
Pages: 31699-707
Protein
Organism: Mus musculus/domesticus
Length: 1075  
Fragment?: false
Protein
Organism: Mus musculus/domesticus
Length: 1196  
Fragment?: false
Protein
Organism: Mus musculus/domesticus
Length: 1195  
Fragment?: true
Protein
Organism: Mus musculus/domesticus
Length: 1159  
Fragment?: false
Protein
Organism: Mus musculus/domesticus
Length: 1167  
Fragment?: true
Protein
Organism: Mus musculus/domesticus
Length: 1159  
Fragment?: false