|  Help  |  About  |  Contact Us

Search our database by keyword

Examples

  • Search this entire website. Enter identifiers, names or keywords for genes, diseases, strains, ontology terms, etc. (e.g. Pax6, Parkinson, ataxia)
  • Use OR to search for either of two terms (e.g. OR mus) or quotation marks to search for phrases (e.g. "dna binding").
  • Boolean search syntax is supported: e.g. Balb* for partial matches or mus AND NOT embryo to exclude a term

Search results 101 to 173 out of 173 for Ddx1

<< First    < Previous  |  Next >    Last >>
0.021s
Type Details Score
Publication
First Author: Hansen J
Year: 2003
Journal: Proc Natl Acad Sci U S A
Title: A large-scale, gene-driven mutagenesis approach for the functional analysis of the mouse genome.
Volume: 100
Issue: 17
Pages: 9918-22
Publication
First Author: Koscielny G
Year: 2014
Journal: Nucleic Acids Res
Title: The International Mouse Phenotyping Consortium Web Portal, a unified point of access for knockout mice and related phenotyping data.
Volume: 42
Issue: Database issue
Pages: D802-9
Publication        
First Author: Mouse Genome Informatics Scientific Curators
Year: 2002
Title: Mouse Genome Informatics Computational Sequence to Gene Associations for FANTOM2 data
Publication
First Author: Stryke D
Year: 2003
Journal: Nucleic Acids Res
Title: BayGenomics: a resource of insertional mutations in mouse embryonic stem cells.
Volume: 31
Issue: 1
Pages: 278-81
Publication      
First Author: International Knockout Mouse Consortium
Year: 2014
Journal: Database Download
Title: MGI download of modified allele data from IKMC and creation of new knockout alleles
Publication      
First Author: International Mouse Strain Resource
Year: 2014
Journal: Database Download
Title: MGI download of germline transmission data for alleles from IMSR strain data
Publication      
First Author: Helmholtz Zentrum Muenchen GmbH
Year: 2010
Journal: MGI Direct Data Submission
Title: Alleles produced for the EUCOMM and EUCOMMTools projects by the Helmholtz Zentrum Muenchen GmbH (Hmgu)
Publication      
First Author: Mouse Genome Informatics and the International Mouse Phenotyping Consortium (IMPC)
Year: 2014
Journal: Database Release
Title: Obtaining and Loading Phenotype Annotations from the International Mouse Phenotyping Consortium (IMPC) Database
Publication
First Author: Hansen GM
Year: 2008
Journal: Genome Res
Title: Large-scale gene trapping in C57BL/6N mouse embryonic stem cells.
Volume: 18
Issue: 10
Pages: 1670-9
Publication        
First Author: GOA curators
Year: 2016
Title: Automatic transfer of experimentally verified manual GO annotation data to orthologs using Ensembl Compara
Publication
First Author: Zambrowicz BP
Year: 2003
Journal: Proc Natl Acad Sci U S A
Title: Wnk1 kinase deficiency lowers blood pressure in mice: a gene-trap screen to identify potential targets for therapeutic intervention.
Volume: 100
Issue: 24
Pages: 14109-14
Publication        
First Author: MGD Nomenclature Committee
Year: 1995
Title: Nomenclature Committee Use
Publication      
First Author: Mouse Genome Informatics (MGI) and National Center for Biotechnology Information (NCBI)
Year: 2008
Journal: Database Download
Title: Mouse Gene Trap Data Load from dbGSS
Publication
First Author: Adams DJ
Year: 2024
Journal: Nature
Title: Genetic determinants of micronucleus formation in vivo.
Volume: 627
Issue: 8002
Pages: 130-136
Publication        
First Author: GemPharmatech
Year: 2020
Title: GemPharmatech Website.
Publication        
First Author: UniProt-GOA
Year: 2012
Title: Gene Ontology annotation based on UniProtKB/Swiss-Prot keyword mapping
Publication        
First Author: AgBase, BHF-UCL, Parkinson's UK-UCL, dictyBase, HGNC, Roslin Institute, FlyBase and UniProtKB curators
Year: 2011
Title: Manual transfer of experimentally-verified manual GO annotation data to orthologs by curator judgment of sequence similarity
Publication      
First Author: The Jackson Laboratory Mouse Radiation Hybrid Database
Year: 2004
Journal: Database Release
Title: Mouse T31 Radiation Hybrid Data Load
Publication        
First Author: The Gene Ontology Consortium
Year: 2010
Title: Automated transfer of experimentally-verified manual GO annotation data to mouse-human orthologs
Publication        
First Author: Mouse Genome Informatics Scientific Curators
Year: 2002
Title: Mouse Genome Informatics Computational Sequence to Gene Associations
Publication      
First Author: MGI Genome Annotation Group and UniGene Staff
Year: 2015
Journal: Database Download
Title: MGI-UniGene Interconnection Effort
Publication      
First Author: Mouse Genome Informatics Scientific Curators
Year: 2010
Journal: Database Download
Title: Mouse Microarray Data Integration in Mouse Genome Informatics, the Affymetrix GeneChip Mouse Genome U74 Array Platform (A, B, C v2).
Publication      
First Author: Mouse Genome Database and National Center for Biotechnology Information
Year: 2000
Journal: Database Release
Title: Entrez Gene Load
Publication      
First Author: Bairoch A
Year: 1999
Journal: Database Release
Title: SWISS-PROT Annotated protein sequence database
Publication        
First Author: Mouse Genome Informatics Scientific Curators
Year: 2005
Title: Obtaining and loading genome assembly coordinates from NCBI annotations
Publication      
First Author: Mouse Genome Informatics Group
Year: 2003
Journal: Database Procedure
Title: Automatic Encodes (AutoE) Reference
Publication      
First Author: Mouse Genome Informatics (MGI) and The National Center for Biotechnology Information (NCBI)
Year: 2010
Journal: Database Download
Title: Consensus CDS project
Publication      
First Author: Mouse Genome Informatics
Year: 2010
Journal: Database Release
Title: Protein Ontology Association Load.
Publication        
First Author: Mouse Genome Informatics Scientific Curators
Year: 2005
Title: Obtaining and Loading Genome Assembly Coordinates from Ensembl Annotations
Publication      
First Author: Mouse Genome Informatics Scientific Curators
Year: 2009
Journal: Database Download
Title: Mouse Microarray Data Integration in Mouse Genome Informatics, the Affymetrix GeneChip Mouse Gene 1.0 ST Array Platform
Publication      
First Author: Allen Institute for Brain Science
Year: 2004
Journal: Allen Institute
Title: Allen Brain Atlas: mouse riboprobes
Publication      
First Author: Mouse Genome Informatics Scientific Curators
Year: 2009
Journal: Database Download
Title: Mouse Microarray Data Integration in Mouse Genome Informatics, the Affymetrix GeneChip Mouse Genome 430 2.0 Array Platform
UniProt Feature
Begin: 1
Description: ATP-dependent RNA helicase DDX1
Type: chain
End: 740
Publication
First Author: Li L
Year: 2006
Journal: Mol Biol Cell
Title: Dynamic nature of cleavage bodies and their spatial relationship to DDX1 bodies, Cajal bodies, and gems.
Volume: 17
Issue: 3
Pages: 1126-40
Protein
Organism: Mus musculus/domesticus
Length: 740  
Fragment?: false
Protein
Organism: Mus musculus/domesticus
Length: 740  
Fragment?: false
Protein
Organism: Mus musculus/domesticus
Length: 190  
Fragment?: true
Protein
Organism: Mus musculus/domesticus
Length: 740  
Fragment?: false
Publication
First Author: Wu CH
Year: 2014
Journal: Cell Host Microbe
Title: Nucleocapsid phosphorylation and RNA helicase DDX1 recruitment enables coronavirus transition from discontinuous to continuous transcription.
Volume: 16
Issue: 4
Pages: 462-72
Publication
First Author: Popow J
Year: 2014
Journal: Nature
Title: Analysis of orthologous groups reveals archease and DDX1 as tRNA splicing factors.
Volume: 511
Issue: 7507
Pages: 104-7
Publication
First Author: Fujiwara T
Year: 2016
Journal: JCI Insight
Title: PLEKHM1/DEF8/RAB7 complex regulates lysosome positioning and bone homeostasis.
Volume: 1
Issue: 17
Pages: e86330
Protein
Organism: Mus musculus/domesticus
Length: 515  
Fragment?: false
Protein
Organism: Mus musculus/domesticus
Length: 429  
Fragment?: false
Protein
Organism: Mus musculus/domesticus
Length: 308  
Fragment?: false
Protein
Organism: Mus musculus/domesticus
Length: 344  
Fragment?: false
Protein
Organism: Mus musculus/domesticus
Length: 259  
Fragment?: true
Protein
Organism: Mus musculus/domesticus
Length: 108  
Fragment?: false
Protein
Organism: Mus musculus/domesticus
Length: 142  
Fragment?: false
Protein
Organism: Mus musculus/domesticus
Length: 213  
Fragment?: true
Protein
Organism: Mus musculus/domesticus
Length: 135  
Fragment?: true
Protein
Organism: Mus musculus/domesticus
Length: 308  
Fragment?: false
Publication  
First Author: Akter KA
Year: 2017
Journal: Int J Biochem Cell Biol
Title: FAM98A associates with DDX1-C14orf166-FAM98B in a novel complex involved in colorectal cancer progression.
Volume: 84
Pages: 1-13
Protein Domain
Type: Family
Description: FAM98A, B and C are glycine-rich proteins found from worms to humans. FAM98A contains a tubulin-binding calponin homology domain. It interacts with PLEKHM1 and functions in lysosome positioning in osteoclasts []. FAM98A and FAM98B are included in a novel complex with DDX1 and C14orf166 and are involved in colorectal cancer progression [].
Publication
First Author: Cong Y
Year: 2017
Journal: Sci Rep
Title: Coronavirus nucleocapsid proteins assemble constitutively in high molecular oligomers.
Volume: 7
Issue: 1
Pages: 5740
Publication  
First Author: Zinzula L
Year: 2021
Journal: Biochem Biophys Res Commun
Title: High-resolution structure and biophysical characterization of the nucleocapsid phosphoprotein dimerization domain from the Covid-19 severe acute respiratory syndrome coronavirus 2.
Volume: 538
Pages: 54-62
Protein Domain
Type: Family
Description: The Nucleocapsid (N) protein is a highly immunogenic phosphoprotein also implicated in viral genome replication and in modulating cell signalling pathways. The N protein interacts with genomic and subgenomic RNA molecules. Together with the envelope protein M, it participates in genome condensation and packaging. The N protein is a highly immunogenic and abundantly expressed protein during infection, capable of inducing protective immune responses against SARS-CoV and SARS-CoV-2 [, , , , ].Coronavirus (CoV) nucleocapsid (N) proteins have 3 highly conserved domains. The N-terminal domain (NTD) (N1b), the C-terminal domain (CTD)(N2b) and the N3 region. The N1b and N2b domains from SARS CoV, infectious bronchitis virus (IBV), human CoV 229E and mouse hepatic virus (MHV) display similar topological organisations. N proteins form dimers, which are asymmetrically arranged into octamers via their N2b domains.Domains N1b and N2b are linked by another domain N2a that contains an SR-rich region (rich in serine and arginine residues). A priming phosphorylation of specific serine residues by an as yet unknown kinase, triggers the subsequent phosphorylation by the host glycogen synthase kinase-3 (GSK-3) of several residues in the SR-rich region. This phosphorylation allows the N protein to associate with the RNA helicase DDX1 permitting template read-through, and enabling the transition from discontinuous transcription of subgenomic mRNAs (sgmRNAs) to continuous synthesis of longer sgmRNAs and genomic RNA (gRNA). Production of gRNA in the presence of N oligomers may promote the formation of ribonucleoprotein complexes, and the newly transcribed sgmRNA would guarantee efficient synthesis of structural proteins [, , ].It has been shown that N proteins interact with nonstructural protein 3 (NSP3) and thus are recruited to the replication-transcription complexes (RTCs). In MHV, the N1b and N2a domains mediate the binding to NSP3 in a gRNA-independent manner. At the RTCs, the N protein is required for the stimulation of gRNA replication and sgmRNA transcription. It remains unclear, however, how and why the N protein orchestrates viral RNA synthesis. The cytoplasmic N-terminal ubiquitin-like domain of NSP3 and the SR-rich region of the N2a domain of the N protein may be important for this interaction. The direct association of N protein with RTCs is a critical step for MHV infection [].This entry represents the nucleocapsid protein from Betacoronavirus.
Protein Domain
Type: Family
Description: The Nucleocapsid (N) protein is a highly immunogenic phosphoprotein also implicated in viral genome replication and in modulating cell signalling pathways. The N protein interacts with genomic and subgenomic RNA molecules. Together with the envelope protein M, it participates in genome condensation and packaging. The N protein is a highly immunogenic and abundantly expressed protein during infection, capable of inducing protective immune responses against SARS-CoV and SARS-CoV-2 [, , , , ].Coronavirus (CoV) nucleocapsid (N) proteins have 3 highly conserved domains. The N-terminal domain (NTD) (N1b), the C-terminal domain (CTD)(N2b) and the N3 region. The N1b and N2b domains from SARS CoV, infectious bronchitis virus (IBV), human CoV 229E and mouse hepatic virus (MHV) display similar topological organisations. N proteins form dimers, which are asymmetrically arranged into octamers via their N2b domains.Domains N1b and N2b are linked by another domain N2a that contains an SR-rich region (rich in serine and arginine residues). A priming phosphorylation of specific serine residues by an as yet unknown kinase, triggers the subsequent phosphorylation by the host glycogen synthase kinase-3 (GSK-3) of several residues in the SR-rich region. This phosphorylation allows the N protein to associate with the RNA helicase DDX1 permitting template read-through, and enabling the transition from discontinuous transcription of subgenomic mRNAs (sgmRNAs) to continuous synthesis of longer sgmRNAs and genomic RNA (gRNA). Production of gRNA in the presence of N oligomers may promote the formation of ribonucleoprotein complexes, and the newly transcribed sgmRNA would guarantee efficient synthesis of structural proteins [, , ].It has been shown that N proteins interact with nonstructural protein 3 (NSP3) and thus are recruited to the replication-transcription complexes (RTCs). In MHV, the N1b and N2a domains mediate the binding to NSP3 in a gRNA-independent manner. At the RTCs, the N protein is required for the stimulation of gRNA replication and sgmRNA transcription. It remains unclear, however, how and why the N protein orchestrates viral RNA synthesis. The cytoplasmic N-terminal ubiquitin-like domain of NSP3 and the SR-rich region of the N2a domain of the N protein may be important for this interaction. The direct association of N protein with RTCs is a critical step for MHV infection [].The entry represents the Coronavirus nucleocapsid protein.
Protein Domain
Type: Family
Description: The Nucleocapsid (N) protein is a highly immunogenic phosphoprotein also implicated in viral genome replication and in modulating cell signalling pathways. The N protein interacts with genomic and subgenomic RNA molecules. Together with the envelope protein M, it participates in genome condensation and packaging. The N protein is a highly immunogenic and abundantly expressed protein during infection, capable of inducing protective immune responses against SARS-CoV and SARS-CoV-2 [, , , , ].Coronavirus (CoV) nucleocapsid (N) proteins have 3 highly conserved domains. The N-terminal domain (NTD) (N1b), the C-terminal domain (CTD)(N2b) and the N3 region. The N1b and N2b domains from SARS CoV, infectious bronchitis virus (IBV), human CoV 229E and mouse hepatic virus (MHV) display similar topological organisations. N proteins form dimers, which are asymmetrically arranged into octamers via their N2b domains.Domains N1b and N2b are linked by another domain N2a that contains an SR-rich region (rich in serine and arginine residues). A priming phosphorylation of specific serine residues by an as yet unknown kinase, triggers the subsequent phosphorylation by the host glycogen synthase kinase-3 (GSK-3) of several residues in the SR-rich region. This phosphorylation allows the N protein to associate with the RNA helicase DDX1 permitting template read-through, and enabling the transition from discontinuous transcription of subgenomic mRNAs (sgmRNAs) to continuous synthesis of longer sgmRNAs and genomic RNA (gRNA). Production of gRNA in the presence of N oligomers may promote the formation of ribonucleoprotein complexes, and the newly transcribed sgmRNA would guarantee efficient synthesis of structural proteins [, , ].It has been shown that N proteins interact with nonstructural protein 3 (NSP3) and thus are recruited to the replication-transcription complexes (RTCs). In MHV, the N1b and N2a domains mediate the binding to NSP3 in a gRNA-independent manner. At the RTCs, the N protein is required for the stimulation of gRNA replication and sgmRNA transcription. It remains unclear, however, how and why the N protein orchestrates viral RNA synthesis. The cytoplasmic N-terminal ubiquitin-like domain of NSP3 and the SR-rich region of the N2a domain of the N protein may be important for this interaction. The direct association of N protein with RTCs is a critical step for MHV infection [].This entry represents the nucleocapsid protein from gammacoronavirus.
Protein Domain
Type: Family
Description: The Nucleocapsid (N) protein is a highly immunogenic phosphoprotein also implicated in viral genome replication and in modulating cell signalling pathways. The N protein interacts with genomic and subgenomic RNA molecules. Together with the envelope protein M, it participates in genome condensation and packaging. The N protein is a highly immunogenic and abundantly expressed protein during infection, capable of inducing protective immune responses against SARS-CoV and SARS-CoV-2 [, , , , ].Coronavirus (CoV) nucleocapsid (N) proteins have 3 highly conserved domains. The N-terminal domain (NTD) (N1b), the C-terminal domain (CTD)(N2b) and the N3 region. The N1b and N2b domains from SARS CoV, infectious bronchitis virus (IBV), human CoV 229E and mouse hepatic virus (MHV) display similar topological organisations. N proteins form dimers, which are asymmetrically arranged into octamers via their N2b domains.DomainsN1b and N2b are linked by another domain N2a that contains an SR-rich region (rich in serine and arginine residues). A priming phosphorylation of specific serine residues by an as yet unknown kinase, triggers the subsequent phosphorylation by the host glycogen synthase kinase-3 (GSK-3) of several residues in the SR-rich region. This phosphorylation allows the N protein to associate with the RNA helicase DDX1 permitting template read-through, and enabling the transition from discontinuous transcription of subgenomic mRNAs (sgmRNAs) to continuous synthesis of longer sgmRNAs and genomic RNA (gRNA). Production of gRNA in the presence of N oligomers may promote the formation of ribonucleoprotein complexes, and the newly transcribed sgmRNA would guarantee efficient synthesis of structural proteins [, , ].It has been shown that N proteins interact with nonstructural protein 3 (NSP3) and thus are recruited to the replication-transcription complexes (RTCs). In MHV, the N1b and N2a domains mediate the binding to NSP3 in a gRNA-independent manner. At the RTCs, the N protein is required for the stimulation of gRNA replication and sgmRNA transcription. It remains unclear, however, how and why the N protein orchestrates viral RNA synthesis. The cytoplasmic N-terminal ubiquitin-like domain of NSP3 and the SR-rich region of the N2a domain of the N protein may be important for this interaction. The direct association of N protein with RTCs is a critical step for MHV infection [].This entry represents the nucleocapsid protein from alphacoronavirus.
Publication  
First Author: Cong Y
Year: 2020
Journal: J Virol
Title: Nucleocapsid Protein Recruitment to Replication-Transcription Complexes Plays a Crucial Role in Coronaviral Life Cycle.
Volume: 94
Issue: 4
Publication
First Author: Liu SJ
Year: 2006
Journal: Vaccine
Title: Immunological characterizations of the nucleocapsid protein based SARS vaccine candidates.
Volume: 24
Issue: 16
Pages: 3100-8
Publication  
First Author: Ahmed SF
Year: 2020
Journal: Viruses
Title: Preliminary Identification of Potential Vaccine Targets for the COVID-19 Coronavirus (SARS-CoV-2) Based on SARS-CoV Immunological Studies.
Volume: 12
Issue: 3
Publication
First Author: Lin Y
Year: 2003
Journal: Cell Res
Title: Identification of an epitope of SARS-coronavirus nucleocapsid protein.
Volume: 13
Issue: 3
Pages: 141-5
Publication
First Author: Shang B
Year: 2005
Journal: Biochem Biophys Res Commun
Title: Characterization and application of monoclonal antibodies against N protein of SARS-coronavirus.
Volume: 336
Issue: 1
Pages: 110-7
Publication
First Author: Okazaki Y
Year: 2002
Journal: Nature
Title: Analysis of the mouse transcriptome based on functional annotation of 60,770 full-length cDNAs.
Volume: 420
Issue: 6915
Pages: 563-73
Publication
First Author: Kawai J
Year: 2001
Journal: Nature
Title: Functional annotation of a full-length mouse cDNA collection.
Volume: 409
Issue: 6821
Pages: 685-90
Publication
First Author: Carninci P
Year: 2000
Journal: Genome Res
Title: Normalization and subtraction of cap-trapper-selected cDNAs to prepare full-length cDNA libraries for rapid discovery of new genes.
Volume: 10
Issue: 10
Pages: 1617-30
Publication  
First Author: Carninci P
Year: 1999
Journal: Methods Enzymol
Title: High-efficiency full-length cDNA cloning.
Volume: 303
Pages: 19-44
Publication
First Author: Shibata K
Year: 2000
Journal: Genome Res
Title: RIKEN integrated sequence analysis (RISA) system--384-format sequencing pipeline with 384 multicapillary sequencer.
Volume: 10
Issue: 11
Pages: 1757-71
Publication
First Author: Katayama S
Year: 2005
Journal: Science
Title: Antisense transcription in the mammalian transcriptome.
Volume: 309
Issue: 5740
Pages: 1564-6
Publication
First Author: Gerhard DS
Year: 2004
Journal: Genome Res
Title: The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC).
Volume: 14
Issue: 10B
Pages: 2121-7
Publication
First Author: Huttlin EL
Year: 2010
Journal: Cell
Title: A tissue-specific atlas of mouse protein phosphorylation and expression.
Volume: 143
Issue: 7
Pages: 1174-89
Publication
First Author: Church DM
Year: 2009
Journal: PLoS Biol
Title: Lineage-specific biology revealed by a finished genome assembly of the mouse.
Volume: 7
Issue: 5
Pages: e1000112