|  Help  |  About  |  Contact Us

Search our database by keyword

Examples

  • Search this entire website. Enter identifiers, names or keywords for genes, diseases, strains, ontology terms, etc. (e.g. Pax6, Parkinson, ataxia)
  • Use OR to search for either of two terms (e.g. OR mus) or quotation marks to search for phrases (e.g. "dna binding").
  • Boolean search syntax is supported: e.g. Balb* for partial matches or mus AND NOT embryo to exclude a term

Search results 1 to 100 out of 431 for Eif4b

<< First    < Previous  |  Next >    Last >>
0.039s

Categories

Hits by Pathway

Hits by Strain

Hits by Category

Type Details Score
Gene
Type: gene
Organism: Homo sapiens
Gene
Type: gene
Organism: Drosophila melanogaster
Gene
Type: gene
Organism: Rattus norvegicus
Protein Coding Gene
Type: protein_coding_gene
Organism: Mus musculus
Publication
First Author: Dennis MD
Year: 2012
Journal: J Biol Chem
Title: Role of p70S6K1-mediated phosphorylation of eIF4B and PDCD4 proteins in the regulation of protein synthesis.
Volume: 287
Issue: 51
Pages: 42890-9
Publication
First Author: Kroczynska B
Year: 2009
Journal: Mol Cell Biol
Title: Interferon-dependent engagement of eukaryotic initiation factor 4B via S6 kinase (S6K)- and ribosomal protein S6K-mediated signals.
Volume: 29
Issue: 10
Pages: 2865-75
Protein Coding Gene
Type: protein_coding_gene
Organism: Mus caroli
Protein Coding Gene
Type: protein_coding_gene
Organism: Mus musculus
Protein Coding Gene
Type: protein_coding_gene
Organism: Mus musculus
Protein Coding Gene
Type: protein_coding_gene
Organism: Mus musculus
Protein Coding Gene
Type: protein_coding_gene
Organism: Mus musculus
Protein Coding Gene
Type: protein_coding_gene
Organism: Mus musculus
Protein Coding Gene
Type: protein_coding_gene
Organism: Mus musculus
Protein Coding Gene
Type: protein_coding_gene
Organism: Mus musculus
Protein Coding Gene
Type: protein_coding_gene
Organism: Mus musculus
Protein Coding Gene
Type: protein_coding_gene
Organism: Mus musculus
Protein Coding Gene
Type: protein_coding_gene
Organism: Mus musculus
Protein Coding Gene
Type: protein_coding_gene
Organism: Mus musculus
Protein Coding Gene
Type: protein_coding_gene
Organism: Mus musculus
Protein Coding Gene
Type: protein_coding_gene
Organism: Mus musculus
Protein Coding Gene
Type: protein_coding_gene
Organism: Mus musculus
Protein Coding Gene
Type: protein_coding_gene
Organism: Mus musculus
Protein Coding Gene
Type: protein_coding_gene
Organism: Mus musculus
Protein Coding Gene
Type: protein_coding_gene
Organism: Mus pahari
Protein Coding Gene
Type: protein_coding_gene
Organism: Mus spretus
Publication
First Author: Araki K
Year: 1999
Journal: Cell Mol Biol (Noisy-le-grand)
Title: Exchangeable gene trap using the Cre/mutated lox system.
Volume: 45
Issue: 5
Pages: 737-50
Publication
First Author: Taniwaki T
Year: 2005
Journal: Dev Growth Differ
Title: Characterization of an exchangeable gene trap using pU-17 carrying a stop codon-beta geo cassette.
Volume: 47
Issue: 3
Pages: 163-72
Publication
First Author: Ko MS
Year: 2000
Journal: Development
Title: Large-scale cDNA analysis reveals phased gene expression patterns during preimplantation mouse development.
Volume: 127
Issue: 8
Pages: 1737-49
Publication      
First Author: The Jackson Laboratory
Year: 2012
Journal: MGI Direct Data Submission
Title: Alleles produced for the KOMP project by The Jackson Laboratory
Publication
First Author: Hansen J
Year: 2003
Journal: Proc Natl Acad Sci U S A
Title: A large-scale, gene-driven mutagenesis approach for the functional analysis of the mouse genome.
Volume: 100
Issue: 17
Pages: 9918-22
Publication        
First Author: Mouse Genome Informatics Scientific Curators
Year: 2002
Title: Mouse Genome Informatics Computational Sequence to Gene Associations for FANTOM2 data
Publication
First Author: Stryke D
Year: 2003
Journal: Nucleic Acids Res
Title: BayGenomics: a resource of insertional mutations in mouse embryonic stem cells.
Volume: 31
Issue: 1
Pages: 278-81
Publication      
First Author: Mouse Genome Informatics and the International Mouse Phenotyping Consortium (IMPC)
Year: 2014
Journal: Database Release
Title: Obtaining and Loading Phenotype Annotations from the International Mouse Phenotyping Consortium (IMPC) Database
Publication
First Author: Hansen GM
Year: 2008
Journal: Genome Res
Title: Large-scale gene trapping in C57BL/6N mouse embryonic stem cells.
Volume: 18
Issue: 10
Pages: 1670-9
Publication        
First Author: Mouse Genome Informatics Scientific Curators
Year: 2010
Title: Rat to Mouse ISO GO annotation transfer
Publication        
First Author: Mouse Genome Informatics Scientific Curators
Year: 2003
Title: MGI Sequence Curation Reference
Publication
First Author: Carninci P
Year: 2005
Journal: Science
Title: The transcriptional landscape of the mammalian genome.
Volume: 309
Issue: 5740
Pages: 1559-63
Publication
First Author: Kawai J
Year: 2001
Journal: Nature
Title: Functional annotation of a full-length mouse cDNA collection.
Volume: 409
Issue: 6821
Pages: 685-90
Publication
First Author: Zambrowicz BP
Year: 2003
Journal: Proc Natl Acad Sci U S A
Title: Wnk1 kinase deficiency lowers blood pressure in mice: a gene-trap screen to identify potential targets for therapeutic intervention.
Volume: 100
Issue: 24
Pages: 14109-14
Publication          
First Author: MGD Nomenclature Committee
Year: 1995
Publication      
First Author: Mouse Genome Informatics (MGI) and National Center for Biotechnology Information (NCBI)
Year: 2008
Journal: Database Download
Title: Mouse Gene Trap Data Load from dbGSS
Publication        
First Author: Mouse Genome Informatics Scientific Curators
Year: 2001
Title: Gene Ontology Annotation by the MGI Curatorial Staff
Publication      
First Author: The Jackson Laboratory Mouse Radiation Hybrid Database
Year: 2004
Journal: Database Release
Title: Mouse T31 Radiation Hybrid Data Load
Publication
First Author: Gaudet P
Year: 2011
Journal: Brief Bioinform
Title: Phylogenetic-based propagation of functional annotations within the Gene Ontology consortium.
Volume: 12
Issue: 5
Pages: 449-62
Publication        
First Author: Mouse Genome Informatics Scientific Curators
Year: 2010
Title: Human to Mouse ISO GO annotation transfer
Publication        
First Author: Mouse Genome Informatics Scientific Curators
Year: 2000
Title: Gene Ontology Annotation by electronic association of SwissProt Keywords with GO terms
Publication
First Author: Diez-Roux G
Year: 2011
Journal: PLoS Biol
Title: A high-resolution anatomical atlas of the transcriptome in the mouse embryo.
Volume: 9
Issue: 1
Pages: e1000582
Publication        
First Author: Mouse Genome Informatics Scientific Curators
Year: 2002
Title: Mouse Genome Informatics Computational Sequence to Gene Associations
Publication      
First Author: Mouse Genome Informatics
Year: 2010
Journal: Database Release
Title: Protein Ontology Association Load.
Publication      
First Author: Mouse Genome Database and National Center for Biotechnology Information
Year: 2000
Journal: Database Release
Title: Entrez Gene Load
Publication      
First Author: Mouse Genome Informatics Group
Year: 2003
Journal: Database Procedure
Title: Automatic Encodes (AutoE) Reference
Publication      
First Author: Allen Institute for Brain Science
Year: 2004
Journal: Allen Institute
Title: Allen Brain Atlas: mouse riboprobes
Publication        
First Author: Mouse Genome Informatics Scientific Curators
Year: 2005
Title: Obtaining and loading genome assembly coordinates from NCBI annotations
Publication      
First Author: Mouse Genome Informatics (MGI) and The National Center for Biotechnology Information (NCBI)
Year: 2010
Journal: Database Download
Title: Consensus CDS project
Publication        
First Author: Mouse Genome Informatics Scientific Curators
Year: 2005
Title: Obtaining and Loading Genome Assembly Coordinates from Ensembl Annotations
Publication      
First Author: Mouse Genome Informatics Scientific Curators
Year: 2009
Journal: Database Download
Title: Mouse Microarray Data Integration in Mouse Genome Informatics, the Affymetrix GeneChip Mouse Gene 1.0 ST Array Platform
Publication      
First Author: Mouse Genome Informatics Scientific Curators
Year: 2009
Journal: Database Download
Title: Mouse Microarray Data Integration in Mouse Genome Informatics, the Affymetrix GeneChip Mouse Genome 430 2.0 Array Platform
Publication      
First Author: Bairoch A
Year: 1999
Journal: Database Release
Title: SWISS-PROT Annotated protein sequence database
Publication
First Author: Eom T
Year: 2014
Journal: J Cell Biol
Title: Neuronal BC RNAs cooperate with eIF4B to mediate activity-dependent translational control.
Volume: 207
Issue: 2
Pages: 237-52
Publication
First Author: Yang J
Year: 2013
Journal: Cancer Res
Title: eIF4B phosphorylation by pim kinases plays a critical role in cellular transformation by Abl oncogenes.
Volume: 73
Issue: 15
Pages: 4898-908
Publication
First Author: Walker SE
Year: 2013
Journal: RNA
Title: Yeast eIF4B binds to the head of the 40S ribosomal subunit and promotes mRNA recruitment through its N-terminal and internal repeat domains.
Volume: 19
Issue: 2
Pages: 191-207
Publication
First Author: Cen B
Year: 2014
Journal: Mol Cell Biol
Title: The Pim-1 protein kinase is an important regulator of MET receptor tyrosine kinase levels and signaling.
Volume: 34
Issue: 13
Pages: 2517-32
Publication
First Author: Steiner JL
Year: 2014
Journal: PLoS One
Title: Disruption of genes encoding eIF4E binding proteins-1 and -2 does not alter basal or sepsis-induced changes in skeletal muscle protein synthesis in male or female mice.
Volume: 9
Issue: 6
Pages: e99582
Publication
First Author: Rico C
Year: 2012
Journal: Carcinogenesis
Title: Pharmacological targeting of mammalian target of rapamycin inhibits ovarian granulosa cell tumor growth.
Volume: 33
Issue: 11
Pages: 2283-92
Publication
First Author: Wang S
Year: 2014
Journal: J Virol
Title: Influenza A virus-induced degradation of eukaryotic translation initiation factor 4B contributes to viral replication by suppressing IFITM3 protein expression.
Volume: 88
Issue: 15
Pages: 8375-85
Publication
First Author: Caruthers JM
Year: 2000
Journal: Proc Natl Acad Sci U S A
Title: Crystal structure of yeast initiation factor 4A, a DEAD-box RNA helicase.
Volume: 97
Issue: 24
Pages: 13080-5
Publication
First Author: Caruthers JM
Year: 2002
Journal: Curr Opin Struct Biol
Title: Helicase structure and mechanism.
Volume: 12
Issue: 1
Pages: 123-33
Publication
First Author: Tanner NK
Year: 2001
Journal: Mol Cell
Title: DExD/H box RNA helicases: from generic motors to specific dissociation functions.
Volume: 8
Issue: 2
Pages: 251-62
Publication
First Author: Koonin EV
Year: 1993
Journal: Nucleic Acids Res
Title: Escherichia coli dinG gene encodes a putative DNA helicase related to a group of eukaryotic helicases including Rad3 protein.
Volume: 21
Issue: 6
Pages: 1497
Protein
Organism: Mus musculus
Length: 34  
Fragment?: true
Protein Domain
Type: Domain
Description: Helicases have been classified in 5 superfamilies (SF1-SF5). All of the proteins bind ATP and, consequently, all of them carry the classical Walker A(phosphate-binding loop or P-loop) and Walker B(Mg2+-binding aspartic acid) motifs. For the two largest groups, commonlyreferred to as SF1 and SF2, a total of seven characteristic motifs has beenidentified []. These two superfamilies encompass a large number of DNA andRNA helicases from archaea, eubacteria, eukaryotes and viruses that seem to beactive as monomers or dimers. RNA and DNA helicases are considered to beenzymes that catalyze the separation of double-stranded nucleic acids in anenergy-dependent manner [].The various structures of SF1 and SF2 helicases present a common core with twoalpha-beta RecA-like domains [, ]. Thestructural homology with the RecA recombination protein covers the fivecontiguous parallel beta strands and the tandem alpha helices. ATP binds tothe amino proximal alpha-beta domain, where the Walker A (motif I) and WalkerB (motif II) are found. The N-terminal domain also contains motif III (S-A-T)which was proposed to participate in linking ATPase and helicase activities.The carboxy-terminal alpha-beta domain is structurally very similar to theproximal one even though it is bereft of an ATP-binding site, suggesting thatit may have originally arisen through gene duplication of the first one.Some members of helicase superfamilies 1 and 2 are listed below:DEAD-box RNA helicases. The prototype of DEAD-boxproteins is the translation initiation factor eIF4A. The eIF4A protein isan RNA-dependent ATPase which functions together with eIF4B as an RNAhelicase [].DEAH-box RNA helicases. Mainly pre-mRNA-splicing factorATP-dependent RNA helicases [].Eukaryotic DNA repair helicase RAD3/ERCC-2, an ATP-dependent 5'-3' DNAhelicase involved in nucleotide excision repair of UV-damaged DNA.Eukaryotic TFIIH basal transcription factor complex helicase XPB subunit.An ATP-dependent 3'-5' DNA helicase which is a component of the core-TFIIHbasal transcription factor, involved in nucleotide excision repair (NER) ofDNA and, when complexed to CAK, in RNA transcription by RNA polymerase II.It acts by opening DNA either around the RNA transcription start site orthe DNA.Eukaryotic ATP-dependent DNA helicase Q. A DNA helicase that may play arole in the repair of DNA that is damaged by ultraviolet light or othermutagens.Bacterial and eukaryotic antiviral SKI2-like helicase. SKI2 has a role inthe 3'-mRNA degradation pathway, repressing dsRNA virus propagation byspecifically blocking translation of viral mRNAs, perhaps recognizing theabsence of CAP or poly(A).Bacterial DNA-damage-inducible protein G (DinG). A probable helicaseinvolved in DNA repair and perhaps also replication [].Bacterial primosomal protein N' (PriA). PriA protein is one of sevenproteins that make up the restart primosome, an apparatus that promotesassembly of replisomes at recombination intermediates and stalledreplication forks.Bacterial ATP-dependent DNA helicase recG. It has a critical role inrecombination and DNA repair, helping process Holliday junctionintermediates to mature products by catalyzing branch migration. It has aDNA unwinding activity characteristic of helicases with a 3' to 5'polarity.A variety of DNA and RNA virus helicases and transcription factorsThis entry represents the DNA-binding domain of classical SF1 and SF2 helicases. It does not recognize bacterial DinG and eukaryotic Rad3 which differ from other SF1-SF2 helicases by the presence of a large insert after the Walker A (see ).
Protein Domain
Type: Domain
Description: Helicases have been classified in 5 superfamilies (SF1-SF5). All of the proteins bind ATP and, consequently, all of them carry the classical Walker A(phosphate-binding loop or P-loop) and Walker B(Mg2+-binding aspartic acid) motifs. For the two largest groups, commonlyreferred to as SF1 and SF2, a total of seven characteristic motifs has beenidentified []. These two superfamilies encompass a large number of DNA andRNA helicases from archaea, eubacteria, eukaryotes and viruses that seem to beactive as monomers or dimers. RNA and DNA helicases are considered to beenzymes that catalyze the separation of double-stranded nucleic acids in anenergy-dependent manner [].The various structures of SF1 and SF2 helicases present a common core with twoalpha-beta RecA-like domains [, ]. Thestructural homology with the RecA recombination protein covers the fivecontiguous parallel beta strands and the tandem alpha helices. ATP binds tothe amino proximal alpha-beta domain, where the Walker A (motif I) and WalkerB (motif II) are found. The N-terminal domain also contains motif III (S-A-T)which was proposed to participate in linking ATPase and helicase activities.The carboxy-terminal alpha-beta domain is structurally very similar to theproximal one even though it is bereft of an ATP-binding site, suggesting thatit may have originally arisen through gene duplication of the first one.Some members of helicase superfamilies 1 and 2 are listed below:DEAD-box RNA helicases. The prototype of DEAD-boxproteins is the translation initiation factor eIF4A. The eIF4A protein isan RNA-dependent ATPase which functions together with eIF4B as an RNAhelicase [].DEAH-box RNA helicases. Mainly pre-mRNA-splicing factorATP-dependent RNA helicases [].Eukaryotic DNA repair helicase RAD3/ERCC-2, an ATP-dependent 5'-3' DNAhelicase involved in nucleotide excision repair of UV-damaged DNA.Eukaryotic TFIIH basal transcription factor complex helicase XPB subunit.An ATP-dependent 3'-5' DNA helicase which is a component of the core-TFIIHbasal transcription factor, involved in nucleotide excision repair (NER) ofDNA and, when complexed to CAK, in RNA transcription by RNA polymerase II.It acts by opening DNA either around the RNA transcription start site orthe DNA.Eukaryotic ATP-dependent DNA helicase Q. A DNA helicase that may play arole in the repair of DNA that is damaged by ultraviolet light or othermutagens.Bacterial and eukaryotic antiviral SKI2-like helicase. SKI2 has a role inthe 3'-mRNA degradation pathway, repressing dsRNA virus propagation byspecifically blocking translation of viral mRNAs, perhaps recognizing theabsence of CAP or poly(A).Bacterial DNA-damage-inducible protein G (DinG). A probable helicaseinvolved in DNA repair and perhaps also replication [].Bacterial primosomal protein N' (PriA). PriA protein is one of sevenproteins that make up the restart primosome, an apparatus that promotesassembly of replisomes at recombination intermediates and stalledreplication forks.Bacterial ATP-dependent DNA helicase recG. It has a critical role inrecombination and DNA repair, helping process Holliday junctionintermediates to mature products by catalyzing branch migration. It has aDNA unwinding activity characteristic of helicases with a 3' to 5'polarity.A variety of DNA and RNA virus helicases and transcription factorsThis entry represents the ATP-binding domain found within bacterial DinG and eukaryotic Rad3 proteins, differing from other SF1 and SF2 helicases by the presence of a large insert after the Walker A motif [].
Protein Domain
Type: Family
Description: Helicases have been classified in 5 superfamilies (SF1-SF5). All of the proteins bind ATP and, consequently, all of them carry the classical Walker A(phosphate-binding loop or P-loop) and Walker B(Mg2+-binding aspartic acid) motifs. For the two largest groups, commonlyreferred to as SF1 and SF2, a total of seven characteristic motifs has beenidentified []. These two superfamilies encompass a large number of DNA andRNA helicases from archaea, eubacteria, eukaryotes and viruses that seem to beactive as monomers or dimers. RNA and DNA helicases are considered to beenzymes that catalyze the separation of double-stranded nucleic acids in anenergy-dependent manner [].The various structures of SF1 and SF2 helicases present a common core with twoalpha-beta RecA-like domains [, ]. Thestructural homology with the RecA recombination protein covers the fivecontiguous parallel beta strands and the tandem alpha helices. ATP binds tothe amino proximal alpha-beta domain, where the Walker A (motif I) and WalkerB (motif II) are found. The N-terminal domain also contains motif III (S-A-T)which was proposed to participate in linking ATPase and helicase activities.The carboxy-terminal alpha-beta domain is structurally very similar to theproximal one even though it is bereft of an ATP-binding site, suggesting thatit may have originally arisen through gene duplication of the first one.Some members of helicase superfamilies 1 and 2 are listed below:DEAD-box RNA helicases. The prototype of DEAD-boxproteins is the translation initiation factor eIF4A. The eIF4A protein isan RNA-dependent ATPase which functions together with eIF4B as an RNAhelicase [].DEAH-box RNA helicases. Mainly pre-mRNA-splicing factorATP-dependent RNA helicases [].Eukaryotic DNA repair helicase RAD3/ERCC-2, an ATP-dependent 5'-3' DNAhelicase involved in nucleotide excision repair of UV-damaged DNA.Eukaryotic TFIIH basal transcription factor complex helicase XPB subunit.An ATP-dependent 3'-5' DNA helicase which is a component of the core-TFIIHbasal transcription factor, involved in nucleotide excision repair (NER) ofDNA and, when complexed to CAK, in RNA transcription by RNA polymerase II.It acts by opening DNA either around the RNA transcription start site orthe DNA.Eukaryotic ATP-dependent DNA helicase Q. A DNA helicase that may play arole in the repair of DNA that is damaged by ultraviolet light or othermutagens.Bacterial and eukaryotic antiviral SKI2-like helicase. SKI2 has a role inthe 3'-mRNA degradation pathway, repressing dsRNA virus propagation byspecifically blocking translation of viral mRNAs, perhaps recognizing theabsence of CAP or poly(A).Bacterial DNA-damage-inducible protein G (DinG). A probable helicaseinvolved in DNA repair and perhaps also replication [].Bacterial primosomal protein N' (PriA). PriA protein is one of sevenproteins that make up the restart primosome, an apparatus that promotesassembly of replisomes at recombination intermediates and stalledreplication forks.Bacterial ATP-dependent DNA helicase recG. It has a critical role inrecombination and DNA repair, helping process Holliday junctionintermediates to mature products by catalyzing branch migration. It has aDNA unwinding activity characteristic of helicases with a 3' to 5'polarity.A variety of DNA and RNA virus helicases and transcription factorsThis entry includes bacterial DinG and eukaryotic Rad3 proteins, differing from other SF1 and SF2 helicases by the presence of a large insert after the Walker A motif [].
Protein
Organism: Mus musculus
Length: 87  
Fragment?: false
Protein
Organism: Mus musculus
Length: 1174  
Fragment?: false
Protein
Organism: Mus musculus
Length: 898  
Fragment?: true
Publication
First Author: Gorbalenya AE
Year: 1989
Journal: Nucleic Acids Res
Title: Two related superfamilies of putative helicases involved in replication, recombination, repair and expression of DNA and RNA genomes.
Volume: 17
Issue: 12
Pages: 4713-30
Protein
Organism: Mus musculus
Length: 1203  
Fragment?: false
Protein
Organism: Mus musculus
Length: 906  
Fragment?: false
Protein
Organism: Mus musculus
Length: 168  
Fragment?: true
Protein
Organism: Mus musculus
Length: 992  
Fragment?: true
Protein
Organism: Mus musculus
Length: 162  
Fragment?: true
Protein
Organism: Mus musculus
Length: 880  
Fragment?: false
Protein
Organism: Mus musculus
Length: 824  
Fragment?: true
Protein
Organism: Mus musculus
Length: 393  
Fragment?: false
Protein
Organism: Mus musculus
Length: 886  
Fragment?: false
Protein
Organism: Mus musculus
Length: 747  
Fragment?: false
Protein
Organism: Mus musculus
Length: 1040  
Fragment?: false
Protein
Organism: Mus musculus
Length: 1145  
Fragment?: false
Protein
Organism: Mus musculus
Length: 718  
Fragment?: false
Protein
Organism: Mus musculus
Length: 639  
Fragment?: false
Protein
Organism: Mus musculus
Length: 1481  
Fragment?: false
Protein
Organism: Mus musculus
Length: 1069  
Fragment?: false
Protein
Organism: Mus musculus
Length: 1240  
Fragment?: false
Protein
Organism: Mus musculus
Length: 229  
Fragment?: true
Protein
Organism: Mus musculus
Length: 410  
Fragment?: true
Protein
Organism: Mus musculus
Length: 421  
Fragment?: true
Protein
Organism: Mus musculus
Length: 152  
Fragment?: true
Protein
Organism: Mus musculus
Length: 242  
Fragment?: false
Protein
Organism: Mus musculus
Length: 173  
Fragment?: true