Type |
Details |
Score |
Gene |
Type: |
gene |
Organism: |
human |
|
•
•
•
•
•
|
Gene |
Type: |
gene |
Organism: |
frog, western clawed |
|
•
•
•
•
•
|
Gene |
|
•
•
•
•
•
|
Gene |
Type: |
gene |
Organism: |
dog, domestic |
|
•
•
•
•
•
|
Gene |
Type: |
gene |
Organism: |
chimpanzee |
|
•
•
•
•
•
|
Gene |
Type: |
gene |
Organism: |
cattle |
|
•
•
•
•
•
|
Gene |
Type: |
gene |
Organism: |
chicken |
|
•
•
•
•
•
|
Gene |
Type: |
gene |
Organism: |
zebrafish |
|
•
•
•
•
•
|
Gene |
Type: |
gene |
Organism: |
macaque, rhesus |
|
•
•
•
•
•
|
Protein Domain |
Type: |
Family |
Description: |
Fanconi anemia-associated protein of 24kDa (FAAP24) plays a role in DNA repair through recruitment of the FA core complex to damaged DNA. It regulates FANCD2 monoubiquitination upon DNA damage. When repressed, it induces chromosomal instability as well as hypersensitivity to DNA cross-linking agents. It targets FANCM/FAAP24 complex to the DNA, preferentially to single strand DNA [].Fanconi anemia (FA) is a human disorder characterized by cancer susceptibility and cellular sensitivity to DNA crosslinks and other damages. The FA complex repairs the interstrand cross-linking (ICL) lesions and coordinates activities of the downstream DNA repair pathway including nucleotide excision repair, translesion synthesis, and homologous recombination. It is required for the monoubiquitylation of FANCD2 and FANCI heterodimer. The FA core complex consists of FANCA, FANCB, FANCC, FANCE, FANCF, FANCG, FANCL, FANCM, FANCT (UBET2), FAAP100 and FAAP24 [, ]. |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Publication |
First Author: |
Ciccia A |
Year: |
2007 |
Journal: |
Mol Cell |
Title: |
Identification of FAAP24, a Fanconi anemia core complex protein that interacts with FANCM. |
Volume: |
25 |
Issue: |
3 |
Pages: |
331-43 |
|
•
•
•
•
•
|
Publication |
First Author: |
Yan Z |
Year: |
2010 |
Journal: |
Mol Cell |
Title: |
A histone-fold complex and FANCM form a conserved DNA-remodeling complex to maintain genome stability. |
Volume: |
37 |
Issue: |
6 |
Pages: |
865-78 |
|
•
•
•
•
•
|
Publication |
First Author: |
Bhattacharjee S |
Year: |
2017 |
Journal: |
Cell Commun Signal |
Title: |
DNA damage response and cancer therapeutics through the lens of the Fanconi Anemia DNA repair pathway. |
Volume: |
15 |
Issue: |
1 |
Pages: |
41 |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
221
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
Mus caroli |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
Mus pahari |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
Mus spretus |
|
•
•
•
•
•
|
Publication |
First Author: |
Friedel RH |
Year: |
2007 |
Journal: |
Brief Funct Genomic Proteomic |
Title: |
EUCOMM--the European conditional mouse mutagenesis program. |
Volume: |
6 |
Issue: |
3 |
Pages: |
180-5 |
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Informatics Scientific Curators |
Year: |
2002 |
|
Title: |
Mouse Genome Informatics Computational Sequence to Gene Associations for FANTOM2 data |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Hansen GM |
Year: |
2008 |
Journal: |
Genome Res |
Title: |
Large-scale gene trapping in C57BL/6N mouse embryonic stem cells. |
Volume: |
18 |
Issue: |
10 |
Pages: |
1670-9 |
|
•
•
•
•
•
|
Publication |
First Author: |
Carninci P |
Year: |
2005 |
Journal: |
Science |
Title: |
The transcriptional landscape of the mammalian genome. |
Volume: |
309 |
Issue: |
5740 |
Pages: |
1559-63 |
|
•
•
•
•
•
|
Publication |
First Author: |
MGD Nomenclature Committee |
Year: |
1995 |
|
Title: |
Nomenclature Committee Use |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Informatics (MGI) and National Center for Biotechnology Information (NCBI) |
Year: |
2008 |
Journal: |
Database Download |
Title: |
Mouse Gene Trap Data Load from dbGSS |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Cyagen Biosciences Inc. |
Year: |
2022 |
|
Title: |
Cyagen Biosciences Website. |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
AgBase, BHF-UCL, Parkinson's UK-UCL, dictyBase, HGNC, Roslin Institute, FlyBase and UniProtKB curators |
Year: |
2011 |
|
Title: |
Manual transfer of experimentally-verified manual GO annotation data to orthologs by curator judgment of sequence similarity |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
UniProt-GOA |
Year: |
2012 |
|
Title: |
Gene Ontology annotation based on UniProtKB/Swiss-Prot keyword mapping |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
GOA curators |
Year: |
2016 |
|
Title: |
Automatic transfer of experimentally verified manual GO annotation data to orthologs using Ensembl Compara |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
The Jackson Laboratory Mouse Radiation Hybrid Database |
Year: |
2004 |
Journal: |
Database Release |
Title: |
Mouse T31 Radiation Hybrid Data Load |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Okazaki Y |
Year: |
2002 |
Journal: |
Nature |
Title: |
Analysis of the mouse transcriptome based on functional annotation of 60,770 full-length cDNAs. |
Volume: |
420 |
Issue: |
6915 |
Pages: |
563-73 |
|
•
•
•
•
•
|
Publication |
First Author: |
The Gene Ontology Consortium |
Year: |
2010 |
|
Title: |
Automated transfer of experimentally-verified manual GO annotation data to mouse-human orthologs |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Diez-Roux G |
Year: |
2011 |
Journal: |
PLoS Biol |
Title: |
A high-resolution anatomical atlas of the transcriptome in the mouse embryo. |
Volume: |
9 |
Issue: |
1 |
Pages: |
e1000582 |
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Informatics Scientific Curators |
Year: |
2002 |
|
Title: |
Mouse Genome Informatics Computational Sequence to Gene Associations |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Marc Feuermann, Huaiyu Mi, Pascale Gaudet, Dustin Ebert, Anushya Muruganujan, Paul Thomas |
Year: |
2010 |
|
Title: |
Annotation inferences using phylogenetic trees |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Database and National Center for Biotechnology Information |
Year: |
2000 |
Journal: |
Database Release |
Title: |
Entrez Gene Load |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Allen Institute for Brain Science |
Year: |
2004 |
Journal: |
Allen Institute |
Title: |
Allen Brain Atlas: mouse riboprobes |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Informatics Scientific Curators |
Year: |
2009 |
Journal: |
Database Download |
Title: |
Mouse Microarray Data Integration in Mouse Genome Informatics, the Affymetrix GeneChip Mouse Gene 1.0 ST Array Platform |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Informatics (MGI) and The National Center for Biotechnology Information (NCBI) |
Year: |
2010 |
Journal: |
Database Download |
Title: |
Consensus CDS project |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Informatics Group |
Year: |
2003 |
Journal: |
Database Procedure |
Title: |
Automatic Encodes (AutoE) Reference |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Bairoch A |
Year: |
1999 |
Journal: |
Database Release |
Title: |
SWISS-PROT Annotated protein sequence database |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Informatics Scientific Curators |
Year: |
2005 |
|
Title: |
Obtaining and Loading Genome Assembly Coordinates from Ensembl Annotations |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Informatics |
Year: |
2010 |
Journal: |
Database Release |
Title: |
Protein Ontology Association Load. |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Informatics Scientific Curators |
Year: |
2005 |
|
Title: |
Obtaining and loading genome assembly coordinates from NCBI annotations |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Informatics Scientific Curators |
Year: |
2009 |
Journal: |
Database Download |
Title: |
Mouse Microarray Data Integration in Mouse Genome Informatics, the Affymetrix GeneChip Mouse Genome 430 2.0 Array Platform |
|
|
|
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
78
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
114
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Publication |
First Author: |
Lorenz A |
Year: |
2012 |
Journal: |
Science |
Title: |
The fission yeast FANCM ortholog directs non-crossover recombination during meiosis. |
Volume: |
336 |
Issue: |
6088 |
Pages: |
1585-8 |
|
•
•
•
•
•
|
Protein Domain |
Type: |
Family |
Description: |
Centromere protein X (CENP-X) is a component of several different complexes, including the multisubunit FA complex, the heterotetrameric CENP-T-W-S-X complex and the APITD1/CENPS complex. The Fanconi anemia (FA) core complex is involved in DNA damage repair and genome maintenance. The FA complex is composed of CENPS, FANCA, FANCB, FANCC, FANCE, FANCF, FANCG, FANCL/PHF9, FANCM, FAAP24 and CENPX. Interacts with CENPS, FANCM and FAAP24 [, ]. Inner kinetochore subunit mhf2 is the dsDNA-binding component of the FANCM-MHF complex, important for gene conversion at blocked replication forks []and non-crossover recombination during mitosis and meiosis [].The CENP-T-W-S-X complex binds, supercoils DNA and plays an important role in kinetochore assembly [].The APITD1/CENPS complex is composed of at least of CENP-S and CENP-X and is essential for the stable assembly of the outer kinetchore []. |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
591
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
660
 |
Fragment?: |
true |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
169
 |
Fragment?: |
true |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
229
 |
Fragment?: |
true |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
412
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
212
 |
Fragment?: |
true |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
43
 |
Fragment?: |
true |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
461
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
117
 |
Fragment?: |
true |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
216
 |
Fragment?: |
true |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
283
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
558
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein Domain |
Type: |
Family |
Description: |
Fanconi anemia (FA) is a human disorder characterized by cancer susceptibility and cellular sensitivity to DNA crosslinks and other damages. The FA complex repairs the interstrand cross-linking (ICL) lesions and coordinates activities of the downstream DNA repair pathway including nucleotide excision repair, translesion synthesis, and homologous recombination. It is required for the monoubiquitylation of FANCD2 and FANCI heterodimer. The FA core complex consists of FANCA, FANCB, FANCC, FANCE, FANCF, FANCG, FANCL, FANCM, FANCT (UBET2), FAAP100 and FAAP24 [, ].This entry represents FANCC []. |
|
•
•
•
•
•
|
Protein Domain |
Type: |
Family |
Description: |
Fanconi anemia (FA) is a human disorder characterized by cancer susceptibility and cellular sensitivity to DNA crosslinks and other damages. The FA complex repairs the interstrand cross-linking (ICL) lesions and coordinates activities of the downstream DNA repair pathway including nucleotide excision repair, translesion synthesis, and homologous recombination. It is required for the monoubiquitylation of FANCD2 and FANCI heterodimer. The FA core complex consists of FANCA, FANCB, FANCC, FANCE, FANCF, FANCG, FANCL, FANCM, FANCT (UBET2), FAAP100 and FAAP24 [, ].This entry represents FANCA []. |
|
•
•
•
•
•
|
Protein Domain |
Type: |
Domain |
Description: |
Fanconi anemia (FA) is a human disorder characterized by cancer susceptibility and cellular sensitivity to DNA crosslinks and other damages. The FA complex repairs the interstrand cross-linking (ICL) lesions and coordinates activities of the downstream DNA repair pathway including nucleotide excision repair, translesion synthesis, and homologous recombination. It is required for the monoubiquitylation of FANCD2 and FANCI heterodimer. The FA core complex consists of FANCA, FANCB, FANCC, FANCE, FANCF, FANCG, FANCL, FANCM, FANCT (UBET2), FAAP100 and FAAP24 [, ].This entry represents the N-terminal domain of FANCA. |
|
•
•
•
•
•
|
Protein Domain |
Type: |
Family |
Description: |
Fanconi anemia (FA) is a human disorder characterized by cancer susceptibility and cellular sensitivity to DNA crosslinks and other damages. The FA complex repairs the interstrand cross-linking (ICL) lesions and coordinates activities of the downstream DNA repair pathway including nucleotide excision repair, translesion synthesis, and homologous recombination. It is required for the monoubiquitylation of FANCD2 and FANCI heterodimer. The FA core complex consists of FANCA, FANCB, FANCC, FANCE, FANCF, FANCG, FANCL, FANCM, FANCT (UBET2), FAAP100 and FAAP24 [, ].The FA group E protein (FANCE) has an important role in DNA repair, functioning as the FANCD2-binding protein in the FA core complex []. |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
1439
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
1439
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
481
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
771
 |
Fragment?: |
true |
|
•
•
•
•
•
|
Publication |
First Author: |
Amano M |
Year: |
2009 |
Journal: |
J Cell Biol |
Title: |
The CENP-S complex is essential for the stable assembly of outer kinetochore structure. |
Volume: |
186 |
Issue: |
2 |
Pages: |
173-82 |
|
•
•
•
•
•
|
Publication |
First Author: |
Singh TR |
Year: |
2010 |
Journal: |
Mol Cell |
Title: |
MHF1-MHF2, a histone-fold-containing protein complex, participates in the Fanconi anemia pathway via FANCM. |
Volume: |
37 |
Issue: |
6 |
Pages: |
879-86 |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
879
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
421
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Publication |
First Author: |
Alpi A |
Year: |
2007 |
Journal: |
Mol Cell Biol |
Title: |
UBE2T, the Fanconi anemia core complex, and FANCD2 are recruited independently to chromatin: a basis for the regulation of FANCD2 monoubiquitination. |
Volume: |
27 |
Issue: |
24 |
Pages: |
8421-30 |
|
•
•
•
•
•
|
Publication |
First Author: |
Meetei AR |
Year: |
2003 |
Journal: |
Nat Genet |
Title: |
A novel ubiquitin ligase is deficient in Fanconi anemia. |
Volume: |
35 |
Issue: |
2 |
Pages: |
165-70 |
|
•
•
•
•
•
|
Publication |
First Author: |
Meetei AR |
Year: |
2004 |
Journal: |
Nat Genet |
Title: |
X-linked inheritance of Fanconi anemia complementation group B. |
Volume: |
36 |
Issue: |
11 |
Pages: |
1219-24 |
|
•
•
•
•
•
|
Publication |
First Author: |
Sato K |
Year: |
2012 |
Journal: |
Nucleic Acids Res |
Title: |
DNA robustly stimulates FANCD2 monoubiquitylation in the complex with FANCI. |
Volume: |
40 |
Issue: |
10 |
Pages: |
4553-61 |
|
•
•
•
•
•
|
Publication |
First Author: |
Ling C |
Year: |
2007 |
Journal: |
EMBO J |
Title: |
FAAP100 is essential for activation of the Fanconi anemia-associated DNA damage response pathway. |
Volume: |
26 |
Issue: |
8 |
Pages: |
2104-14 |
|
•
•
•
•
•
|
Protein Domain |
Type: |
Family |
Description: |
Fanconi anemia (FA) is a human disorder characterized by cancer susceptibility and cellular sensitivity to DNA crosslinks and other damages. The FA complex repairs the interstrand cross-linking (ICL) lesions and coordinates activities of the downstream DNA repair pathway including nucleotide excision repair, translesion synthesis, and homologous recombination. It is required for the monoubiquitylation of FANCD2 and FANCI heterodimer. The FA core complex consists of FANCA, FANCB, FANCC, FANCE, FANCF, FANCG, FANCL, FANCM, FANCT (UBET2), FAAP100 and FAAP24 [, ].FANCL is an ubiquitin ligase that mediates monoubiquitination of FANCD2, a key step in the repair of interstrand DNA crosslinks (ICLs) in the Fanconi anemia (FA) pathway [, ]. In humans, defects in FANCL are the cause of Fanconi anemia complementation group L (FANCL). FANCL is a disorder affecting all bone marrow elements and resulting in anemia, leukopenia and thrombopenia. At the cellular level it is associated with hypersensitivity to DNA-damaging agents, chromosomal instability (increased chromosome breakage) and defective DNA repair [, ]. |
|
•
•
•
•
•
|
Protein Domain |
Type: |
Family |
Description: |
Fanconi anemia-associated protein of 100kDa (FAAP100) is component of the Fanconi anemia (FA) core complex, which plays a central role in FA-associated DNA damage response. FAAP100 is essential for the stability and function of the complex [].Fanconi anemia (FA) is a human disorder characterized by cancer susceptibility and cellular sensitivity to DNA crosslinks and other damages. The FA complex repairs the interstrand cross-linking (ICL) lesions and coordinates activities of the downstream DNA repair pathway including nucleotide excision repair, translesion synthesis, and homologous recombination. It is required for the monoubiquitylation of FANCD2 and FANCI heterodimer. The FA core complex consists of FANCA, FANCB, FANCC, FANCE, FANCF, FANCG, FANCL, FANCM, FANCT (UBET2), FAAP100 and FAAP24 [, ]. |
|
•
•
•
•
•
|
Protein Domain |
Type: |
Family |
Description: |
Fanconi anemia (FA) is a human disorder characterized by cancer susceptibility and cellular sensitivity to DNA crosslinks and other damages. The FA complex repairs the interstrand cross-linking (ICL) lesions and coordinates activities of the downstream DNA repair pathway including nucleotide excision repair, translesion synthesis, and homologous recombination. It is required for the monoubiquitylation of FANCD2 and FANCI heterodimer. The FA core complex consists of FANCA, FANCB, FANCC, FANCE, FANCF, FANCG, FANCL, FANCM, FANCT (UBET2), FAAP100 and FAAP24 [, ].Fanconi anemia group F protein (FANCF) is a component of the FA core complex [, ]. FANCF regulates its own expression by methylation at both mRNA and protein levels. Methylation-induced inactivation of FANCF has an important role on the occurrence of ovarian cancers by disrupting the FA-BRCA pathway [].This entry also includes homologues from plants. |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
384
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
462
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
71
 |
Fragment?: |
true |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
484
 |
Fragment?: |
false |
|
•
•
•
•
•
|