Type |
Details |
Score |
Gene |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Publication |
First Author: |
Chen Y |
Year: |
2017 |
Journal: |
Cell Discov |
Title: |
Glycerol kinase-like proteins cooperate with Pld6 in regulating sperm mitochondrial sheath formation and male fertility. |
Volume: |
3 |
|
Pages: |
17030 |
|
•
•
•
•
•
|
Publication |
First Author: |
Shimada K |
Year: |
2019 |
Journal: |
J Reprod Dev |
Title: |
Glycerol kinase 2 is essential for proper arrangement of crescent-like mitochondria to form the mitochondrial sheath during mouse spermatogenesis. |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Pan Y |
Year: |
1999 |
Journal: |
Genomics |
Title: |
Retrotransposition of glycerol kinase-related genes from the X chromosome to autosomes: functional and evolutionary aspects. |
Volume: |
59 |
Issue: |
3 |
Pages: |
282-90 |
|
•
•
•
•
•
|
Publication |
First Author: |
Shanghai Model Organisms Center |
Year: |
2017 |
Journal: |
MGI Direct Data Submission |
Title: |
Information obtained from the Shanghai Model Organisms Center (SMOC), Shanghai, China |
|
|
|
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
Mus caroli |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
Mus pahari |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
Mus spretus |
|
•
•
•
•
•
|
Publication |
First Author: |
Pagliarini DJ |
Year: |
2008 |
Journal: |
Cell |
Title: |
A mitochondrial protein compendium elucidates complex I disease biology. |
Volume: |
134 |
Issue: |
1 |
Pages: |
112-23 |
|
•
•
•
•
•
|
Publication |
First Author: |
Okazaki Y |
Year: |
2002 |
Journal: |
Nature |
Title: |
Analysis of the mouse transcriptome based on functional annotation of 60,770 full-length cDNAs. |
Volume: |
420 |
Issue: |
6915 |
Pages: |
563-73 |
|
•
•
•
•
•
|
Publication |
First Author: |
Paznekas WA |
Year: |
1997 |
Journal: |
Biochem Biophys Res Commun |
Title: |
Mouse TCOF1 is expressed widely, has motifs conserved in nucleolar phosphoproteins, and maps to chromosome 18. |
Volume: |
238 |
Issue: |
1 |
Pages: |
1-6 |
|
•
•
•
•
•
|
Publication |
First Author: |
Dixon J |
Year: |
1997 |
Journal: |
Hum Mol Genet |
Title: |
Sequence analysis, identification of evolutionary conserved motifs and expression analysis of murine tcof1 provide further evidence for a potential function for the gene and its human homologue, TCOF1. |
Volume: |
6 |
Issue: |
5 |
Pages: |
727-37 |
|
•
•
•
•
•
|
Publication |
First Author: |
MGD Nomenclature Committee |
Year: |
1995 |
|
Title: |
Nomenclature Committee Use |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
GemPharmatech |
Year: |
2020 |
|
Title: |
GemPharmatech Website. |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Kumamoto University |
Year: |
2020 |
|
Title: |
CARD R-BASE:Center for Animal Resources and Development Database |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
The Gene Ontology Consortium |
Year: |
2010 |
|
Title: |
Automated transfer of experimentally-verified manual GO annotation data to mouse-human orthologs |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Marc Feuermann, Huaiyu Mi, Pascale Gaudet, Dustin Ebert, Anushya Muruganujan, Paul Thomas |
Year: |
2010 |
|
Title: |
Annotation inferences using phylogenetic trees |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Diez-Roux G |
Year: |
2011 |
Journal: |
PLoS Biol |
Title: |
A high-resolution anatomical atlas of the transcriptome in the mouse embryo. |
Volume: |
9 |
Issue: |
1 |
Pages: |
e1000582 |
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Database and National Center for Biotechnology Information |
Year: |
2000 |
Journal: |
Database Release |
Title: |
Entrez Gene Load |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
The Jackson Laboratory Mouse Radiation Hybrid Database |
Year: |
2004 |
Journal: |
Database Release |
Title: |
Mouse T31 Radiation Hybrid Data Load |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Allen Institute for Brain Science |
Year: |
2004 |
Journal: |
Allen Institute |
Title: |
Allen Brain Atlas: mouse riboprobes |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Informatics Scientific Curators |
Year: |
2009 |
Journal: |
Database Download |
Title: |
Mouse Microarray Data Integration in Mouse Genome Informatics, the Affymetrix GeneChip Mouse Gene 1.0 ST Array Platform |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Informatics (MGI) and The National Center for Biotechnology Information (NCBI) |
Year: |
2010 |
Journal: |
Database Download |
Title: |
Consensus CDS project |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Informatics Group |
Year: |
2003 |
Journal: |
Database Procedure |
Title: |
Automatic Encodes (AutoE) Reference |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Bairoch A |
Year: |
1999 |
Journal: |
Database Release |
Title: |
SWISS-PROT Annotated protein sequence database |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Informatics Scientific Curators |
Year: |
2005 |
|
Title: |
Obtaining and Loading Genome Assembly Coordinates from Ensembl Annotations |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Lennon G |
Year: |
1999 |
Journal: |
Database Download |
Title: |
WashU-HHMI Mouse EST Project |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Informatics Scientific Curators |
Year: |
2002 |
|
Title: |
Mouse Genome Informatics Computational Sequence to Gene Associations |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Informatics Scientific Curators |
Year: |
2010 |
Journal: |
Database Download |
Title: |
Mouse Microarray Data Integration in Mouse Genome Informatics, the Affymetrix GeneChip Mouse Genome U74 Array Platform (A, B, C v2). |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
MGI Genome Annotation Group and UniGene Staff |
Year: |
2015 |
Journal: |
Database Download |
Title: |
MGI-UniGene Interconnection Effort |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Informatics Scientific Curators |
Year: |
2005 |
|
Title: |
Obtaining and loading genome assembly coordinates from NCBI annotations |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Informatics Scientific Curators |
Year: |
2009 |
Journal: |
Database Download |
Title: |
Mouse Microarray Data Integration in Mouse Genome Informatics, the Affymetrix GeneChip Mouse Genome 430 2.0 Array Platform |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Informatics Scientific Curators |
Year: |
2002 |
|
Title: |
Mouse Genome Informatics Computational Sequence to Gene Associations for FANTOM2 data |
|
|
|
|
•
•
•
•
•
|
Allele |
Name: |
glycerol kinase-like 1; endonuclease-mediated mutation 1, Junjiu Huang |
Allele Type: |
Endonuclease-mediated |
Attribute String: |
Null/knockout |
|
•
•
•
•
•
|
Allele |
Name: |
glycerol kinase-like 1; endonuclease-mediated mutation 2, Junjiu Huang |
Allele Type: |
Endonuclease-mediated |
Attribute String: |
Null/knockout |
|
•
•
•
•
•
|
Allele |
Name: |
glycerol kinase-like 1; endonuclease-mediated mutation, Junjiu Huang |
Allele Type: |
Endonuclease-mediated |
Attribute String: |
Null/knockout |
|
•
•
•
•
•
|
Allele |
Name: |
glycerol kinase-like 1; endonuclease-mediated mutation 1, Shanghai Model Organisms Center |
Allele Type: |
Endonuclease-mediated |
Attribute String: |
Null/knockout |
|
•
•
•
•
•
|
Strain |
Attribute String: |
coisogenic, mutant strain, endonuclease-mediated mutation |
|
•
•
•
•
•
|
Publication |
First Author: |
Worley KC |
Year: |
1995 |
Journal: |
J Comput Biol |
Title: |
Identification of new members of a carbohydrate kinase-encoding gene family. |
Volume: |
2 |
Issue: |
3 |
Pages: |
451-8 |
|
•
•
•
•
•
|
Protein Domain |
Type: |
Family |
Description: |
This entry corresponds to a group of metazoan glycerol kinases (GKs), coded by X chromosome-linked GK genes, and glycerol kinase (GK)-like proteins, coded by autosomal testis-specific GK-like genes GK2, GK3 and Gykl1 (in mouse). These are thought to have arise by the transposition of Gk located on the Xchromosome []. Sequence comparison shows that metazoan GKs and GK-like proteins in this family are closely related to the bacterial GKs, which catalyze the Mg-ATP dependent phosphorylation of glycerol to yield glycerol 3-phosphate (G3P). The metazoan GKs do have GK enzymatic activity. However, the GK-like metazoan proteins do not exhibit GK activity and their biological functions are not yet clear []. Some of them lack important functional residues involved in the binding of ADP and Mg2+, which may result in the loss of GK catalytic function. Others that have conserved catalytic residues have lost their GK activity as well; the reason remains unclear. It has been suggested the conserved catalytic residues might facilitate them performing a distinct function. GK2 seem to be necessary for the formation of the mitochondrial sheath during spermatogenesis [, ].GKs belong to the FGGY family of carbohydrate kinases, the monomers of which contain two large domains, which are separated by a deep cleft that forms the active site []. |
|
•
•
•
•
•
|
Publication |
First Author: |
Martinez Agosto JA |
Year: |
2006 |
Journal: |
Mol Genet Metab |
Title: |
Conserved family of glycerol kinase loci in Drosophila melanogaster. |
Volume: |
88 |
Issue: |
4 |
Pages: |
334-45 |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
554
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
559
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
524
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
549
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
552
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
535
 |
Fragment?: |
true |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
552
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
549
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
549
 |
Fragment?: |
false |
|
•
•
•
•
•
|