|  Help  |  About  |  Contact Us

Search our database by keyword

Examples

  • Search this entire website. Enter identifiers, names or keywords for genes, diseases, strains, ontology terms, etc. (e.g. Pax6, Parkinson, ataxia)
  • Use OR to search for either of two terms (e.g. OR mus) or quotation marks to search for phrases (e.g. "dna binding").
  • Boolean search syntax is supported: e.g. Balb* for partial matches or mus AND NOT embryo to exclude a term

Search results 1 to 76 out of 76 for Naf1

0.027s
Type Details Score
Gene
Type: gene
Organism: human
Gene
Type: gene
Organism: cattle
Gene
Type: gene
Organism: chicken
Gene
Type: gene
Organism: zebrafish
Gene
Type: gene
Organism: macaque, rhesus
Gene
Type: gene
Organism: frog, western clawed
Protein Domain
Type: Family
Description: Naf1 is an RNA-binding protein required for the maturation of box H/ACA snoRNPs complex and ribosome biogenesis. During assembly of the H/ACA snoRNPs complex, it associates with the complex, disappearing during maturation of the complex and being replaced by Gar1 to yield mature H/ACA snoRNPs complex. The core domain of Naf1 is homologous to the core domain of Gar1, suggesting that they share a common Cbf5 binding surface [].
Gene
Type: gene
Organism: rat
Gene
Type: gene
Organism: dog, domestic
Gene
Type: gene
Organism: chimpanzee
Protein Coding Gene
Type: protein_coding_gene
Organism: mouse, laboratory
Protein
Organism: Mus musculus/domesticus
Length: 597  
Fragment?: false
Protein
Organism: Mus musculus/domesticus
Length: 489  
Fragment?: false
Publication
First Author: Stanley SE
Year: 2016
Journal: Sci Transl Med
Title: Loss-of-function mutations in the RNA biogenesis factor NAF1 predispose to pulmonary fibrosis-emphysema.
Volume: 8
Issue: 351
Pages: 351ra107
Publication
First Author: Leulliot N
Year: 2007
Journal: J Mol Biol
Title: The box H/ACA RNP assembly factor Naf1p contains a domain homologous to Gar1p mediating its interaction with Cbf5p.
Volume: 371
Issue: 5
Pages: 1338-53
Protein Coding Gene
Type: protein_coding_gene
Organism: Mus caroli
Protein Coding Gene
Type: protein_coding_gene
Organism: mouse, laboratory
Protein Coding Gene
Type: protein_coding_gene
Organism: mouse, laboratory
Protein Coding Gene
Type: protein_coding_gene
Organism: mouse, laboratory
Protein Coding Gene
Type: protein_coding_gene
Organism: mouse, laboratory
Protein Coding Gene
Type: protein_coding_gene
Organism: mouse, laboratory
Protein Coding Gene
Type: protein_coding_gene
Organism: mouse, laboratory
Protein Coding Gene
Type: protein_coding_gene
Organism: mouse, laboratory
Protein Coding Gene
Type: protein_coding_gene
Organism: mouse, laboratory
Protein Coding Gene
Type: protein_coding_gene
Organism: mouse, laboratory
Protein Coding Gene
Type: protein_coding_gene
Organism: mouse, laboratory
Protein Coding Gene
Type: protein_coding_gene
Organism: mouse, laboratory
Protein Coding Gene
Type: protein_coding_gene
Organism: mouse, laboratory
Protein Coding Gene
Type: protein_coding_gene
Organism: mouse, laboratory
Protein Coding Gene
Type: protein_coding_gene
Organism: mouse, laboratory
Protein Coding Gene
Type: protein_coding_gene
Organism: mouse, laboratory
Protein Coding Gene
Type: protein_coding_gene
Organism: mouse, laboratory
Protein Coding Gene
Type: protein_coding_gene
Organism: Mus pahari
Protein Coding Gene
Type: protein_coding_gene
Organism: Mus spretus
Publication
First Author: Carninci P
Year: 2005
Journal: Science
Title: The transcriptional landscape of the mammalian genome.
Volume: 309
Issue: 5740
Pages: 1559-63
Publication        
First Author: Mouse Genome Informatics Scientific Curators
Year: 2002
Title: MGC Data curation in Mouse Genome Informatics
Publication      
First Author: Mouse Genome Informatics Scientific Curators
Year: 2003
Journal: Database Download
Title: Integrating Computational Gene Models into the Mouse Genome Informatics (MGI) Database
Publication        
First Author: Mouse Genome Informatics Scientific Curators
Year: 2003
Title: Data Curation Using Mouse Genome Assembly
Publication        
First Author: Mouse Genome Informatics Scientific Curators
Year: 2003
Title: MGI Sequence Curation Reference
Publication        
First Author: MGD Nomenclature Committee
Year: 1995
Title: Nomenclature Committee Use
Publication      
First Author: Mouse Genome Informatics (MGI) and National Center for Biotechnology Information (NCBI)
Year: 2008
Journal: Database Download
Title: Mouse Gene Trap Data Load from dbGSS
Publication
First Author: Zambrowicz BP
Year: 2003
Journal: Proc Natl Acad Sci U S A
Title: Wnk1 kinase deficiency lowers blood pressure in mice: a gene-trap screen to identify potential targets for therapeutic intervention.
Volume: 100
Issue: 24
Pages: 14109-14
Publication        
First Author: GemPharmatech
Year: 2020
Title: GemPharmatech Website.
Publication        
First Author: AgBase, BHF-UCL, Parkinson's UK-UCL, dictyBase, HGNC, Roslin Institute, FlyBase and UniProtKB curators
Year: 2011
Title: Manual transfer of experimentally-verified manual GO annotation data to orthologs by curator judgment of sequence similarity
Publication      
First Author: The Jackson Laboratory Mouse Radiation Hybrid Database
Year: 2004
Journal: Database Release
Title: Mouse T31 Radiation Hybrid Data Load
Publication        
First Author: Mouse Genome Informatics Scientific Curators
Year: 2010
Title: Human to Mouse ISO GO annotation transfer
Publication
First Author: Diez-Roux G
Year: 2011
Journal: PLoS Biol
Title: A high-resolution anatomical atlas of the transcriptome in the mouse embryo.
Volume: 9
Issue: 1
Pages: e1000582
Publication      
First Author: Mouse Genome Informatics Scientific Curators
Year: 2010
Journal: Database Download
Title: Mouse Microarray Data Integration in Mouse Genome Informatics, the Affymetrix GeneChip Mouse Genome U74 Array Platform (A, B, C v2).
Publication        
First Author: Mouse Genome Informatics Scientific Curators
Year: 2002
Title: Mouse Genome Informatics Computational Sequence to Gene Associations
Publication        
First Author: Marc Feuermann, Huaiyu Mi, Pascale Gaudet, Dustin Ebert, Anushya Muruganujan, Paul Thomas
Year: 2010
Title: Annotation inferences using phylogenetic trees
Publication      
First Author: Bairoch A
Year: 1999
Journal: Database Release
Title: SWISS-PROT Annotated protein sequence database
Publication        
First Author: Mouse Genome Informatics Scientific Curators
Year: 2005
Title: Obtaining and Loading Genome Assembly Coordinates from Ensembl Annotations
Publication        
First Author: Mouse Genome Informatics Scientific Curators
Year: 2005
Title: Obtaining and loading genome assembly coordinates from NCBI annotations
Publication      
First Author: Mouse Genome Informatics (MGI) and The National Center for Biotechnology Information (NCBI)
Year: 2010
Journal: Database Download
Title: Consensus CDS project
Publication      
First Author: Mouse Genome Informatics
Year: 2010
Journal: Database Release
Title: Protein Ontology Association Load.
Publication      
First Author: Mouse Genome Database and National Center for Biotechnology Information
Year: 2000
Journal: Database Release
Title: Entrez Gene Load
Publication      
First Author: Allen Institute for Brain Science
Year: 2004
Journal: Allen Institute
Title: Allen Brain Atlas: mouse riboprobes
Publication      
First Author: Mouse Genome Informatics Group
Year: 2003
Journal: Database Procedure
Title: Automatic Encodes (AutoE) Reference
UniProt Feature
Begin: 1
Description: H/ACA ribonucleoprotein complex non-core subunit NAF1
Type: chain
End: 489
Protein
Organism: Mus musculus/domesticus
Length: 122  
Fragment?: true
Protein
Organism: Mus musculus/domesticus
Length: 647  
Fragment?: false
Protein
Organism: Mus musculus/domesticus
Length: 594  
Fragment?: false
Protein
Organism: Mus musculus/domesticus
Length: 646  
Fragment?: false
Protein
Organism: Mus musculus/domesticus
Length: 79  
Fragment?: true
Protein Domain
Type: Homologous_superfamily
Description: H/ACA ribonucleoprotein particles (RNPs) are a family of RNA pseudouridine synthases that specify modification sites through guide RNAs. The function of these H/ACA RNPs is essential for biogenesis of the ribosome, splicing of precursor mRNAs (pre-mRNAs), maintenance of telomeres and probably for additional cellular processes []. All H/ACA RNPs contain a specific RNA component (snoRNA or scaRNA) and at least four proteins common to all such particles: Cbf5, Gar1, Nhp2 and Nop10. These proteins are highly conserved from yeast to mammals and homologues are also present in archaea []. The H/ACA protein complex contains a stable core composed of Cbf5 and Nop10, to which Gar1 and Nhp2 subsequently bind [].Naf1 is an RNA-binding protein required for the maturation of box H/ACA snoRNPs complex and ribosome biogenesis. During assembly of the H/ACA snoRNPs complex, it associates with the complex, disappearing during maturation of the complex and being replaced by Gar1 to yield mature H/ACA snoRNPs complex. The core domain of Naf1 is homologous to the core domain of Gar1, suggesting that they share a common Cbf5 binding surface [].
Protein Domain
Type: Family
Description: H/ACA ribonucleoprotein particles (RNPs) are a family of RNA pseudouridine synthases that specify modification sites through guide RNAs. The function of these H/ACA RNPs is essential for biogenesis of the ribosome, splicing of precursor mRNAs (pre-mRNAs), maintenance of telomeres and probably for additional cellular processes []. All H/ACA RNPs contain a specific RNA component (snoRNA or scaRNA) and at least four proteins common to all such particles: Cbf5, Gar1, Nhp2 and Nop10. These proteins are highly conserved from yeast to mammals and homologues are also present in archaea []. The H/ACA protein complex contains a stable core composed of Cbf5 and Nop10, to which Gar1 and Nhp2 subsequently bind [].Naf1 is an RNA-binding protein required for the maturation of box H/ACA snoRNPs complex and ribosome biogenesis. During assembly of the H/ACA snoRNPs complex, it associates with the complex, disappearing during maturation of the complex and being replaced by Gar1 to yield mature H/ACA snoRNPs complex. The core domain of Naf1 is homologous to the core domain of Gar1, suggesting that they share a common Cbf5 binding surface [].
Protein
Organism: Mus musculus/domesticus
Length: 231  
Fragment?: false
Protein
Organism: Mus musculus/domesticus
Length: 198  
Fragment?: true
Protein
Organism: Mus musculus/domesticus
Length: 231  
Fragment?: false
Publication
First Author: Meier UT
Year: 2006
Journal: Trends Biochem Sci
Title: How a single protein complex accommodates many different H/ACA RNAs.
Volume: 31
Issue: 6
Pages: 311-5
Publication
First Author: Watanabe Y
Year: 2000
Journal: Nucleic Acids Res
Title: Evolutionary appearance of genes encoding proteins associated with box H/ACA snoRNAs: cbf5p in Euglena gracilis, an early diverging eukaryote, and candidate Gar1p and Nop10p homologs in archaebacteria.
Volume: 28
Issue: 12
Pages: 2342-52
Publication
First Author: Hamma T
Year: 2010
Journal: J Biol Chem
Title: The box H/ACA ribonucleoprotein complex: interplay of RNA and protein structures in post-transcriptional RNA modification.
Volume: 285
Issue: 2
Pages: 805-9
Publication
First Author: Villén J
Year: 2007
Journal: Proc Natl Acad Sci U S A
Title: Large-scale phosphorylation analysis of mouse liver.
Volume: 104
Issue: 5
Pages: 1488-93
Publication
First Author: Gerhard DS
Year: 2004
Journal: Genome Res
Title: The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC).
Volume: 14
Issue: 10B
Pages: 2121-7
Publication
First Author: Huttlin EL
Year: 2010
Journal: Cell
Title: A tissue-specific atlas of mouse protein phosphorylation and expression.
Volume: 143
Issue: 7
Pages: 1174-89
Publication
First Author: Church DM
Year: 2009
Journal: PLoS Biol
Title: Lineage-specific biology revealed by a finished genome assembly of the mouse.
Volume: 7
Issue: 5
Pages: e1000112