Type |
Details |
Score |
Gene |
Type: |
gene |
Organism: |
human |
|
•
•
•
•
•
|
Gene |
Type: |
gene |
Organism: |
frog, western clawed |
|
•
•
•
•
•
|
Gene |
|
•
•
•
•
•
|
Gene |
Type: |
gene |
Organism: |
dog, domestic |
|
•
•
•
•
•
|
Gene |
Type: |
gene |
Organism: |
chimpanzee |
|
•
•
•
•
•
|
Gene |
Type: |
gene |
Organism: |
cattle |
|
•
•
•
•
•
|
Gene |
Type: |
gene |
Organism: |
chicken |
|
•
•
•
•
•
|
Gene |
Type: |
gene |
Organism: |
zebrafish |
|
•
•
•
•
•
|
Gene |
Type: |
gene |
Organism: |
macaque, rhesus |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Publication |
First Author: |
Hall EA |
Year: |
2017 |
Journal: |
Am J Hum Genet |
Title: |
PLAA Mutations Cause a Lethal Infantile Epileptic Encephalopathy by Disrupting Ubiquitin-Mediated Endolysosomal Degradation of Synaptic Proteins. |
Volume: |
100 |
Issue: |
5 |
Pages: |
706-724 |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
Mus caroli |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
Mus pahari |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
Mus spretus |
|
•
•
•
•
•
|
Publication |
First Author: |
Wang H |
Year: |
1995 |
Journal: |
Gene |
Title: |
Cloning of a rat cDNA encoding a protein with high homology to mouse phospholipase A2-activating protein. |
Volume: |
161 |
Issue: |
2 |
Pages: |
237-41 |
|
•
•
•
•
•
|
Publication |
First Author: |
Falik Zaccai TC |
Year: |
2017 |
Journal: |
Brain |
Title: |
Phospholipase A2-activating protein is associated with a novel form of leukoencephalopathy. |
Volume: |
140 |
Issue: |
2 |
Pages: |
370-386 |
|
•
•
•
•
•
|
Publication |
First Author: |
Clark MA |
Year: |
1991 |
Journal: |
Proc Natl Acad Sci U S A |
Title: |
Cloning of a phospholipase A2-activating protein. |
Volume: |
88 |
Issue: |
12 |
Pages: |
5418-22 |
|
•
•
•
•
•
|
Publication |
First Author: |
Zhao G |
Year: |
2009 |
Journal: |
Proc Natl Acad Sci U S A |
Title: |
An Armadillo motif in Ufd3 interacts with Cdc48 and is involved in ubiquitin homeostasis and protein degradation. |
Volume: |
106 |
Issue: |
38 |
Pages: |
16197-202 |
|
•
•
•
•
•
|
Publication |
First Author: |
Seigneurin-Berny D |
Year: |
2001 |
Journal: |
Mol Cell Biol |
Title: |
Identification of components of the murine histone deacetylase 6 complex: link between acetylation and ubiquitination signaling pathways. |
Volume: |
21 |
Issue: |
23 |
Pages: |
8035-44 |
|
•
•
•
•
•
|
Publication |
First Author: |
Bai Y |
Year: |
2023 |
Journal: |
Autophagy |
Title: |
PTP4A2 promotes lysophagy by dephosphorylation of VCP/p97 at Tyr805. |
Volume: |
19 |
Issue: |
5 |
Pages: |
1562-1581 |
|
•
•
•
•
•
|
Publication |
First Author: |
Centre for Modeling Human Disease |
Year: |
2010 |
Journal: |
MGI Direct Data Submission |
Title: |
Alleles produced for the NorCOMM project by the Centre for Modeling Human Disease (Cmhd), Institute of Biomaterials & Biomedical Engineering, University of Toronto |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Cobellis G |
Year: |
2005 |
Journal: |
Nucleic Acids Res |
Title: |
Tagging genes with cassette-exchange sites. |
Volume: |
33 |
Issue: |
4 |
Pages: |
e44 |
|
•
•
•
•
•
|
Publication |
First Author: |
Shanghai Model Organisms Center |
Year: |
2017 |
Journal: |
MGI Direct Data Submission |
Title: |
Information obtained from the Shanghai Model Organisms Center (SMOC), Shanghai, China |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
The Jackson Laboratory Backcross DNA Panel Mapping Resource |
Year: |
1999 |
Journal: |
Database Release |
Title: |
JAX BSS Panel Mapping Data |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
MGI and IMPC |
Year: |
2017 |
Journal: |
MGI Direct Data Submission |
Title: |
MGI Curation of Endonuclease-Mediated Alleles (CRISPR) from the International Mouse Phenotyping Consortium (IMPC) |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Ko MS |
Year: |
2000 |
Journal: |
Development |
Title: |
Large-scale cDNA analysis reveals phased gene expression patterns during preimplantation mouse development. |
Volume: |
127 |
Issue: |
8 |
Pages: |
1737-49 |
|
•
•
•
•
•
|
Publication |
First Author: |
Visel A |
Year: |
2004 |
Journal: |
Nucleic Acids Res |
Title: |
GenePaint.org: an atlas of gene expression patterns in the mouse embryo. |
Volume: |
32 |
Issue: |
Database issue |
Pages: |
D552-6 |
|
•
•
•
•
•
|
Publication |
First Author: |
Stryke D |
Year: |
2003 |
Journal: |
Nucleic Acids Res |
Title: |
BayGenomics: a resource of insertional mutations in mouse embryonic stem cells. |
Volume: |
31 |
Issue: |
1 |
Pages: |
278-81 |
|
•
•
•
•
•
|
Publication |
First Author: |
Lennon G |
Year: |
1999 |
Journal: |
Database Download |
Title: |
WashU-HHMI Mouse EST Project |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Informatics and the International Mouse Phenotyping Consortium (IMPC) |
Year: |
2014 |
Journal: |
Database Release |
Title: |
Obtaining and Loading Phenotype Annotations from the International Mouse Phenotyping Consortium (IMPC) Database |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Hansen GM |
Year: |
2008 |
Journal: |
Genome Res |
Title: |
Large-scale gene trapping in C57BL/6N mouse embryonic stem cells. |
Volume: |
18 |
Issue: |
10 |
Pages: |
1670-9 |
|
•
•
•
•
•
|
Publication |
First Author: |
Helmholtz Zentrum Muenchen GmbH |
Year: |
2010 |
Journal: |
MGI Direct Data Submission |
Title: |
Alleles produced for the EUCOMM and EUCOMMTools projects by the Helmholtz Zentrum Muenchen GmbH (Hmgu) |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Informatics Scientific Curators |
Year: |
2003 |
|
Title: |
MGI Sequence Curation Reference |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Carninci P |
Year: |
2005 |
Journal: |
Science |
Title: |
The transcriptional landscape of the mammalian genome. |
Volume: |
309 |
Issue: |
5740 |
Pages: |
1559-63 |
|
•
•
•
•
•
|
Publication |
First Author: |
Kawai J |
Year: |
2001 |
Journal: |
Nature |
Title: |
Functional annotation of a full-length mouse cDNA collection. |
Volume: |
409 |
Issue: |
6821 |
Pages: |
685-90 |
|
•
•
•
•
•
|
Publication |
First Author: |
Zambrowicz BP |
Year: |
2003 |
Journal: |
Proc Natl Acad Sci U S A |
Title: |
Wnk1 kinase deficiency lowers blood pressure in mice: a gene-trap screen to identify potential targets for therapeutic intervention. |
Volume: |
100 |
Issue: |
24 |
Pages: |
14109-14 |
|
•
•
•
•
•
|
Publication |
First Author: |
GemPharmatech |
Year: |
2020 |
|
Title: |
GemPharmatech Website. |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Informatics (MGI) and National Center for Biotechnology Information (NCBI) |
Year: |
2008 |
Journal: |
Database Download |
Title: |
Mouse Gene Trap Data Load from dbGSS |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
AgBase, BHF-UCL, Parkinson's UK-UCL, dictyBase, HGNC, Roslin Institute, FlyBase and UniProtKB curators |
Year: |
2011 |
|
Title: |
Manual transfer of experimentally-verified manual GO annotation data to orthologs by curator judgment of sequence similarity |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
UniProt-GOA |
Year: |
2012 |
|
Title: |
Gene Ontology annotation based on UniProtKB/Swiss-Prot keyword mapping |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
GOA curators |
Year: |
2016 |
|
Title: |
Automatic transfer of experimentally verified manual GO annotation data to orthologs using Ensembl Compara |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
The Jackson Laboratory Mouse Radiation Hybrid Database |
Year: |
2004 |
Journal: |
Database Release |
Title: |
Mouse T31 Radiation Hybrid Data Load |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Okazaki Y |
Year: |
2002 |
Journal: |
Nature |
Title: |
Analysis of the mouse transcriptome based on functional annotation of 60,770 full-length cDNAs. |
Volume: |
420 |
Issue: |
6915 |
Pages: |
563-73 |
|
•
•
•
•
•
|
Publication |
First Author: |
The Gene Ontology Consortium |
Year: |
2010 |
|
Title: |
Automated transfer of experimentally-verified manual GO annotation data to mouse-human orthologs |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Diez-Roux G |
Year: |
2011 |
Journal: |
PLoS Biol |
Title: |
A high-resolution anatomical atlas of the transcriptome in the mouse embryo. |
Volume: |
9 |
Issue: |
1 |
Pages: |
e1000582 |
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Informatics Scientific Curators |
Year: |
2002 |
|
Title: |
Mouse Genome Informatics Computational Sequence to Gene Associations |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Informatics Scientific Curators |
Year: |
2010 |
Journal: |
Database Download |
Title: |
Mouse Microarray Data Integration in Mouse Genome Informatics, the Affymetrix GeneChip Mouse Genome U74 Array Platform (A, B, C v2). |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Marc Feuermann, Huaiyu Mi, Pascale Gaudet, Dustin Ebert, Anushya Muruganujan, Paul Thomas |
Year: |
2010 |
|
Title: |
Annotation inferences using phylogenetic trees |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Database and National Center for Biotechnology Information |
Year: |
2000 |
Journal: |
Database Release |
Title: |
Entrez Gene Load |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Allen Institute for Brain Science |
Year: |
2004 |
Journal: |
Allen Institute |
Title: |
Allen Brain Atlas: mouse riboprobes |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Informatics Scientific Curators |
Year: |
2009 |
Journal: |
Database Download |
Title: |
Mouse Microarray Data Integration in Mouse Genome Informatics, the Affymetrix GeneChip Mouse Gene 1.0 ST Array Platform |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Informatics (MGI) and The National Center for Biotechnology Information (NCBI) |
Year: |
2010 |
Journal: |
Database Download |
Title: |
Consensus CDS project |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Informatics Group |
Year: |
2003 |
Journal: |
Database Procedure |
Title: |
Automatic Encodes (AutoE) Reference |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Bairoch A |
Year: |
1999 |
Journal: |
Database Release |
Title: |
SWISS-PROT Annotated protein sequence database |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Informatics Scientific Curators |
Year: |
2005 |
|
Title: |
Obtaining and Loading Genome Assembly Coordinates from Ensembl Annotations |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Informatics |
Year: |
2010 |
Journal: |
Database Release |
Title: |
Protein Ontology Association Load. |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Informatics Scientific Curators |
Year: |
2005 |
|
Title: |
Obtaining and loading genome assembly coordinates from NCBI annotations |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Informatics Scientific Curators |
Year: |
2009 |
Journal: |
Database Download |
Title: |
Mouse Microarray Data Integration in Mouse Genome Informatics, the Affymetrix GeneChip Mouse Genome 430 2.0 Array Platform |
|
|
|
|
•
•
•
•
•
|
Protein Domain |
Type: |
Domain |
Description: |
The PFU (for PLAA family ubiquitin binding domain) is an ubiquitin binding domain with no homology to several known ubiquitin binding domains (e.g., UIM, NZF, UBA, UEV, UBP, or CUE domains). The PFU domain appears to be unique to the PLAA family of proteins. A single member of this family of proteins exists in every eukaryotic species examined. Each of these homologues possesses identical domain structure: an N-terminal domain containing seven WD40 repeats, a central PFU domain, and a C-terminal PUL domain, which directly binds to Cdc48, a member of the AAA-ATPase family of molecular chaperone []. In addition to ubiquitin, the PFU domain of DOA1 has been shown to bind to the SH3 domain [].Secondary structure predictions of the PFU domain suggest the presence of an extensive length of β-sheet, N-terminal to an α-helical region [].Some proteins known to contain a PFU domain include:Saccharomyces cerevisiae DOA1 (UFD3, ZZZ4), involved in the ubiquitin conjugation pathway. DOA1 participates in the regulation of the ubiquitin conjugation pathway involving CDC48 by hindering multiubiquitination of substrates at the CDC48 chaperone.Schizosaccharomyces pombe ubiquitin homeostasis protein Lub1, acts as a negative regulator of vacuole-dependent ubiquitin degradation.Mammalian phospholipase A-2-activating protein (PLA2P, PLAA), the homologue of DOA1. PLA2P plays an important role in the regulation of specific inflammatory disease processes. |
|
•
•
•
•
•
|
Publication |
First Author: |
Papadopoulos C |
Year: |
2017 |
Journal: |
EMBO J |
Title: |
VCP/p97 cooperates with YOD1, UBXD1 and PLAA to drive clearance of ruptured lysosomes by autophagy. |
Volume: |
36 |
Issue: |
2 |
Pages: |
135-150 |
|
•
•
•
•
•
|
Publication |
First Author: |
Ren J |
Year: |
2008 |
Journal: |
J Biol Chem |
Title: |
DOA1/UFD3 plays a role in sorting ubiquitinated membrane proteins into multivesicular bodies. |
Volume: |
283 |
Issue: |
31 |
Pages: |
21599-611 |
|
•
•
•
•
•
|
Publication |
First Author: |
Mullally JE |
Year: |
2006 |
Journal: |
Mol Cell Biol |
Title: |
Doa1 is a Cdc48 adapter that possesses a novel ubiquitin binding domain. |
Volume: |
26 |
Issue: |
3 |
Pages: |
822-30 |
|
•
•
•
•
•
|
Allele |
Name: |
phospholipase A2, activating protein; endonuclease-mediated mutation 1, Shanghai Model Organisms Center |
Allele Type: |
Endonuclease-mediated |
Attribute String: |
Null/knockout |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
214
 |
Fragment?: |
true |
|
•
•
•
•
•
|
Strain |
Attribute String: |
coisogenic, endonuclease-mediated mutation, mutant strain |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
794
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein Domain |
Type: |
Homologous_superfamily |
Description: |
The PFU (for PLAA family ubiquitin binding domain) is an ubiquitin binding domain with no homology to several known ubiquitin binding domains (e.g., UIM, NZF, UBA, UEV, UBP, or CUE domains). The PFU domain appears to be unique to the PLAA family of proteins. A single member of this family of proteins exists in every eukaryotic species examined. Each of these homologues possesses identical domain structure: an N-terminal domain containing seven WD40 repeats, a central PFU domain, and a C-terminal PUL domain, which directly binds to Cdc48, a member of the AAA-ATPase family of molecular chaperone []. In addition to ubiquitin, the PFU domain of DOA1 has been shown to bind to the SH3 domain [].Secondary structure predictions of the PFU domain suggest the presence of an extensive length of β-sheet, N-terminal to an α-helical region [].Some proteins known to contain a PFU domain include:Saccharomyces cerevisiae DOA1 (UFD3, ZZZ4), involved in the ubiquitin conjugation pathway. DOA1 participates in the regulation of the ubiquitin conjugation pathway involving CDC48 by hindering multiubiquitination of substrates at the CDC48 chaperone.Schizosaccharomyces pombe ubiquitin homeostasis protein Lub1, acts as a negative regulator of vacuole-dependent ubiquitin degradation.Mammalian phospholipase A-2-activating protein (PLA2P, PLAA), the homologue of DOA1. PLA2P plays an important role in the regulation of specific inflammatory disease processes.This superfamily represents the central PFU domain. |
|
•
•
•
•
•
|
Publication |
First Author: |
Creasey EA |
Year: |
2012 |
Journal: |
Proc Natl Acad Sci U S A |
Title: |
The protein SdhA maintains the integrity of the Legionella-containing vacuole. |
Volume: |
109 |
Issue: |
9 |
Pages: |
3481-6 |
|
•
•
•
•
•
|