|  Help  |  About  |  Contact Us

Search our database by keyword

Examples

  • Search this entire website. Enter identifiers, names or keywords for genes, diseases, strains, ontology terms, etc. (e.g. Pax6, Parkinson, ataxia)
  • Use OR to search for either of two terms (e.g. OR mus) or quotation marks to search for phrases (e.g. "dna binding").
  • Boolean search syntax is supported: e.g. Balb* for partial matches or mus AND NOT embryo to exclude a term

Search results 1 to 98 out of 98 for Rasa2

0.051s
Type Details Score
Gene
Type: gene
Organism: human
Gene
Type: gene
Organism: chimpanzee
Gene
Type: gene
Organism: cattle
Gene
Type: gene
Organism: chicken
Gene
Type: gene
Organism: zebrafish
Gene
Type: gene
Organism: macaque, rhesus
Gene
Type: gene
Organism: frog, western clawed
Gene
Type: gene
Organism: rat
Gene
Type: gene
Organism: dog, domestic
Protein Coding Gene
Type: protein_coding_gene
Organism: mouse, laboratory
Gene
Type: gene
Organism: human
GXD Expression    
Probe: MGI:6181917
Assay Type: RNA in situ
Annotation Date: 2018-07-25
Strength: Present
Sex: Not Specified
Emaps: EMAPS:1689419
Pattern: Not Specified
Stage: TS19
Assay Id: MGI:6191190
Age: embryonic day 11.5
Specimen Label: Table S2 - E11.5 - Rasa2
Detected: true
Specimen Num: 1
GXD Expression    
Probe: MGI:6181917
Assay Type: RNA in situ
Annotation Date: 2018-07-25
Strength: Present
Sex: Not Specified
Emaps: EMAPS:1689421
Pattern: Not Specified
Stage: TS21
Assay Id: MGI:6191190
Age: embryonic day 13.5
Specimen Label: Table S2 - E13.5 - Rasa2
Detected: true
Specimen Num: 2
GXD Expression    
Probe: MGI:6181917
Assay Type: RNA in situ
Annotation Date: 2018-07-25
Strength: Present
Sex: Male
Emaps: EMAPS:1689424
Pattern: Not Specified
Stage: TS24
Assay Id: MGI:6191190
Age: embryonic day 15.5
Specimen Label: Table S2 - E15.5 - Rasa2
Detected: true
Specimen Num: 3
GXD Expression    
Probe: MGI:6181917
Assay Type: RNA in situ
Annotation Date: 2018-07-25
Strength: Present
Sex: Male
Emaps: EMAPS:1689426
Pattern: Not Specified
Stage: TS26
Assay Id: MGI:6191190
Age: embryonic day 18.5
Specimen Label: Table S2 - E18.5 - Rasa2
Detected: true
Specimen Num: 4
GXD Expression    
Probe: MGI:6181917
Assay Type: RNA in situ
Annotation Date: 2018-07-25
Strength: Present
Sex: Male
Emaps: EMAPS:1689428
Pattern: Not Specified
Stage: TS28
Assay Id: MGI:6191190
Age: postnatal day 4
Specimen Label: Table S2 - P4 - Rasa2
Detected: true
Specimen Num: 5
GXD Expression    
Probe: MGI:6181917
Assay Type: RNA in situ
Annotation Date: 2018-07-25
Strength: Present
Sex: Male
Emaps: EMAPS:1689428
Pattern: Not Specified
Stage: TS28
Assay Id: MGI:6191190
Age: postnatal day 14
Specimen Label: Table S2 - P14 - Rasa2
Detected: true
Specimen Num: 6
GXD Expression    
Probe: MGI:6181917
Assay Type: RNA in situ
Annotation Date: 2018-07-25
Strength: Present
Sex: Male
Emaps: EMAPS:1689428
Pattern: Not Specified
Stage: TS28
Assay Id: MGI:6191190
Age: postnatal day 28
Specimen Label: Table S2 - P28 - Rasa2
Detected: true
Specimen Num: 7
Protein Coding Gene
Type: protein_coding_gene
Organism: Mus caroli
Protein Coding Gene
Type: protein_coding_gene
Organism: mouse, laboratory
Protein Coding Gene
Type: protein_coding_gene
Organism: mouse, laboratory
Protein Coding Gene
Type: protein_coding_gene
Organism: mouse, laboratory
Protein Coding Gene
Type: protein_coding_gene
Organism: mouse, laboratory
Protein Coding Gene
Type: protein_coding_gene
Organism: mouse, laboratory
Protein Coding Gene
Type: protein_coding_gene
Organism: mouse, laboratory
Protein Coding Gene
Type: protein_coding_gene
Organism: mouse, laboratory
Protein Coding Gene
Type: protein_coding_gene
Organism: mouse, laboratory
Protein Coding Gene
Type: protein_coding_gene
Organism: mouse, laboratory
Protein Coding Gene
Type: protein_coding_gene
Organism: mouse, laboratory
Protein Coding Gene
Type: protein_coding_gene
Organism: mouse, laboratory
Protein Coding Gene
Type: protein_coding_gene
Organism: mouse, laboratory
Protein Coding Gene
Type: protein_coding_gene
Organism: mouse, laboratory
Protein Coding Gene
Type: protein_coding_gene
Organism: mouse, laboratory
Protein Coding Gene
Type: protein_coding_gene
Organism: mouse, laboratory
Protein Coding Gene
Type: protein_coding_gene
Organism: mouse, laboratory
Protein Coding Gene
Type: protein_coding_gene
Organism: Mus pahari
Protein Coding Gene
Type: protein_coding_gene
Organism: Mus spretus
Publication
First Author: Fukuda M
Year: 1996
Journal: J Biol Chem
Title: Structure-function relationships of the mouse Gap1m. Determination of the inositol 1,3,4,5-tetrakisphosphate-binding domain.
Volume: 271
Issue: 31
Pages: 18838-42
GXD Expression      
Probe: MGI:6444383
Assay Type: RT-PCR
Annotation Date: 2020-07-29
Strength: Present
Sex: Not Specified
Emaps: EMAPS:1716828
Stage: TS28
Assay Id: MGI:6446149
Age: postnatal week 5
Specimen Label: wild type control
Detected: true
Specimen Num: 1
GXD Expression      
Probe: MGI:6444383
Assay Type: RT-PCR
Annotation Date: 2020-07-29
Strength: Present
Sex: Not Specified
Emaps: EMAPS:1716828
Stage: TS28
Assay Id: MGI:6446149
Age: postnatal week 5
Specimen Label: miR-183C
Detected: true
Specimen Num: 2
Publication
First Author: Kenney-Hunt JP
Year: 2006
Journal: Mamm Genome
Title: Quantitative trait loci for body size components in mice.
Volume: 17
Issue: 6
Pages: 526-37
Publication
First Author: Lumayag S
Year: 2013
Journal: Proc Natl Acad Sci U S A
Title: Inactivation of the microRNA-183/96/182 cluster results in syndromic retinal degeneration.
Volume: 110
Issue: 6
Pages: E507-16
Publication      
First Author: Shanghai Model Organisms Center
Year: 2017
Journal: MGI Direct Data Submission
Title: Information obtained from the Shanghai Model Organisms Center (SMOC), Shanghai, China
Publication
First Author: Ko MS
Year: 2000
Journal: Development
Title: Large-scale cDNA analysis reveals phased gene expression patterns during preimplantation mouse development.
Volume: 127
Issue: 8
Pages: 1737-49
Publication
First Author: Thompson CL
Year: 2014
Journal: Neuron
Title: A high-resolution spatiotemporal atlas of gene expression of the developing mouse brain.
Volume: 83
Issue: 2
Pages: 309-323
Publication        
First Author: Mouse Genome Informatics Scientific Curators
Year: 2002
Title: Mouse Genome Informatics Computational Sequence to Gene Associations for FANTOM2 data
Publication      
First Author: Lennon G
Year: 1999
Journal: Database Download
Title: WashU-HHMI Mouse EST Project
Publication      
First Author: Helmholtz Zentrum Muenchen GmbH
Year: 2010
Journal: MGI Direct Data Submission
Title: Alleles produced for the EUCOMM and EUCOMMTools projects by the Helmholtz Zentrum Muenchen GmbH (Hmgu)
Publication        
First Author: Mouse Genome Informatics Scientific Curators
Year: 2001
Title: Gene Ontology Annotation by the MGI Curatorial Staff
Publication        
First Author: UniProt-GOA
Year: 2012
Title: Gene Ontology annotation based on UniProtKB/Swiss-Prot Subcellular Location vocabulary mapping, accompanied by conservative changes to GO terms applied by UniProt
Publication        
First Author: Mouse Genome Informatics Scientific Curators
Year: 2010
Title: Rat to Mouse ISO GO annotation transfer
Publication
First Author: Magdaleno S
Year: 2006
Journal: PLoS Biol
Title: BGEM: an in situ hybridization database of gene expression in the embryonic and adult mouse nervous system.
Volume: 4
Issue: 4
Pages: e86
Publication        
First Author: Mouse Genome Informatics Scientific Curators
Year: 2003
Title: MGI Sequence Curation Reference
Publication        
First Author: Mouse Genome Informatics Scientific Curators
Year: 2002
Title: Chromosome assignment of mouse genes using the Mouse Genome Sequencing Consortium (MGSC) assembly and the ENSEMBL Database
Publication
First Author: Carninci P
Year: 2005
Journal: Science
Title: The transcriptional landscape of the mammalian genome.
Volume: 309
Issue: 5740
Pages: 1559-63
Publication
First Author: Kawai J
Year: 2001
Journal: Nature
Title: Functional annotation of a full-length mouse cDNA collection.
Volume: 409
Issue: 6821
Pages: 685-90
Publication      
First Author: Mouse Genome Informatics (MGI) and National Center for Biotechnology Information (NCBI)
Year: 2008
Journal: Database Download
Title: Mouse Gene Trap Data Load from dbGSS
Publication
First Author: Zambrowicz BP
Year: 2003
Journal: Proc Natl Acad Sci U S A
Title: Wnk1 kinase deficiency lowers blood pressure in mice: a gene-trap screen to identify potential targets for therapeutic intervention.
Volume: 100
Issue: 24
Pages: 14109-14
Publication        
First Author: GemPharmatech
Year: 2020
Title: GemPharmatech Website.
Publication        
First Author: Mouse Genome Informatics Scientific Curators
Year: 2000
Title: Gene Ontology Annotation by electronic association of SwissProt Keywords with GO terms
Publication      
First Author: The Jackson Laboratory Mouse Radiation Hybrid Database
Year: 2004
Journal: Database Release
Title: Mouse T31 Radiation Hybrid Data Load
Publication
First Author: Okazaki Y
Year: 2002
Journal: Nature
Title: Analysis of the mouse transcriptome based on functional annotation of 60,770 full-length cDNAs.
Volume: 420
Issue: 6915
Pages: 563-73
Publication
First Author: Diez-Roux G
Year: 2011
Journal: PLoS Biol
Title: A high-resolution anatomical atlas of the transcriptome in the mouse embryo.
Volume: 9
Issue: 1
Pages: e1000582
Publication      
First Author: Mouse Genome Informatics Scientific Curators
Year: 2010
Journal: Database Download
Title: Mouse Microarray Data Integration in Mouse Genome Informatics, the Affymetrix GeneChip Mouse Genome U74 Array Platform (A, B, C v2).
Publication        
First Author: Mouse Genome Informatics Scientific Curators
Year: 2002
Title: Mouse Genome Informatics Computational Sequence to Gene Associations
Publication      
First Author: Bairoch A
Year: 1999
Journal: Database Release
Title: SWISS-PROT Annotated protein sequence database
Publication        
First Author: Mouse Genome Informatics Scientific Curators
Year: 2005
Title: Obtaining and Loading Genome Assembly Coordinates from Ensembl Annotations
Publication        
First Author: Mouse Genome Informatics Scientific Curators
Year: 2005
Title: Obtaining and loading genome assembly coordinates from NCBI annotations
Publication      
First Author: Mouse Genome Informatics (MGI) and The National Center for Biotechnology Information (NCBI)
Year: 2010
Journal: Database Download
Title: Consensus CDS project
Publication      
First Author: Mouse Genome Informatics
Year: 2010
Journal: Database Release
Title: Protein Ontology Association Load.
Publication      
First Author: Mouse Genome Database and National Center for Biotechnology Information
Year: 2000
Journal: Database Release
Title: Entrez Gene Load
Publication      
First Author: Allen Institute for Brain Science
Year: 2004
Journal: Allen Institute
Title: Allen Brain Atlas: mouse riboprobes
Publication      
First Author: Mouse Genome Informatics Scientific Curators
Year: 2009
Journal: Database Download
Title: Mouse Microarray Data Integration in Mouse Genome Informatics, the Affymetrix GeneChip Mouse Gene 1.0 ST Array Platform
Publication      
First Author: Mouse Genome Informatics Group
Year: 2003
Journal: Database Procedure
Title: Automatic Encodes (AutoE) Reference
Publication      
First Author: Mouse Genome Informatics Scientific Curators
Year: 2009
Journal: Database Download
Title: Mouse Microarray Data Integration in Mouse Genome Informatics, the Affymetrix GeneChip Mouse Genome 430 2.0 Array Platform
Allele
Name: RAS p21 protein activator 2; endonuclease-mediated mutation 2, Shanghai Model Organisms Center
Allele Type: Endonuclease-mediated
Attribute String: Null/knockout
Allele
Name: RAS p21 protein activator 2; endonuclease-mediated mutation 1, Shanghai Model Organisms Center
Allele Type: Endonuclease-mediated
Attribute String: Conditional ready, No functional change
Publication
First Author: Lockyer PJ
Year: 1997
Journal: Curr Biol
Title: Distinct subcellular localisations of the putative inositol 1,3,4,5-tetrakisphosphate receptors GAP1IP4BP and GAP1m result from the GAP1IP4BP PH domain directing plasma membrane targeting.
Volume: 7
Issue: 12
Pages: 1007-10
Protein Domain
Type: Domain
Description: GAP1 (GTPase-activating protein 1) family members include RASA2 (GAP1m), RASAL (RASAL1), GAP1(IP4BP or RASA3), and CAPRI (RASA4). They all display Ras GAP activity. With the exception of RASA2, they all possess an arginine finger-dependent GAP activity on Rap1 [, ]. They contain N-terminal tandem C2 domain repeats, a centrally located Ras-GAP domain, and a PH (pleckstrin homology) domain containing a Btk motif [].This entry represents the PH domain of Ras GTPase-activating protein 2 (RASA2, also known as GAP1m). The tandem C2 domains of RASA2, like those of GAP1IP4BP, do not contain the conserved C2 motif that is known to be required for calcium-dependent phospholipid binding. RASA2 is regulated by the binding of its PH domains to phophoinositides, PIP3 (phosphatidylinositol 3,4,5-trisphosphate) []. It suppresses RAS, enhancing the weak intrinsic GTPase activity of RAS proteins resulting in the inactive GDP-bound form of RAS, allowing control of cellular proliferation and differentiation []. RASA2 also binds to inositol 1,3,4,5-tetrakisphosphate (IP4) [].
Publication
First Author: Lockyer PJ
Year: 1999
Journal: Curr Biol
Title: Identification of the ras GTPase-activating protein GAP1(m) as a phosphatidylinositol-3,4,5-trisphosphate-binding protein in vivo.
Volume: 9
Issue: 5
Pages: 265-8
Publication  
First Author: Schurmans S
Year: 2015
Journal: Adv Biol Regul
Title: The Ras/Rap GTPase activating protein RASA3: from gene structure to in vivo functions.
Volume: 57
Pages: 153-61
Protein Domain
Type: Domain
Description: GAP1 (GTPase-activating protein 1) family members include RASA2 (GAP1m), RASAL (RASAL1), GAP1(IP4BP or RASA3), and CAPRI (RASA4). They all display Ras GAP activity. With the exception of RASA2, they all possess an arginine finger-dependent GAP activity on Rap1 [, ]. They contain N-terminal tandem C2 domain repeats, a centrally located Ras-GAP domain, and a PH (pleckstrin homology) domain containing a Btk motif [].This entry represents the PH domain of Ras GTPase-activating protein 3 (RASA3, also known as GAP1 or IP4BP). The RASA3 PH domain binds to phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P3) and I(1,3,4,5)P4 []. Its C2 domains, like those of RASA2 (GAP1M), do not contain the C2 motif that is known to be required for calcium-dependent phospholipid binding [].
Publication
First Author: Yarwood S
Year: 2006
Journal: Biochem Soc Trans
Title: The GAP1 family of GTPase-activating proteins: spatial and temporal regulators of small GTPase signalling.
Volume: 34
Issue: Pt 5
Pages: 846-50
Publication
First Author: Kupzig S
Year: 2009
Journal: Mol Cell Biol
Title: The ability of GAP1IP4BP to function as a Rap1 GTPase-activating protein (GAP) requires its Ras GAP-related domain and an arginine finger rather than an asparagine thumb.
Volume: 29
Issue: 14
Pages: 3929-40
Publication
First Author: Kupzig S
Year: 2006
Journal: J Biol Chem
Title: GAP1 family members constitute bifunctional Ras and Rap GTPase-activating proteins.
Volume: 281
Issue: 15
Pages: 9891-900
Protein Domain
Type: Family
Description: GAP1 (GTPase-activating protein 1) family members include RASA2 (GAP1m), RASAL (RASAL1), GAP1(IP4BP or RASA3), and CAPRI (RASA4). They all display Ras GAP activity. With the exception of RASA2, they all possess an arginine finger-dependent GAP activity on Rap1 [, ]. They contain N-terminal tandem C2 domain repeats, a centrally located Ras-GAP domain, and a PH (pleckstrin homology) domain containing a Btk motif [].RASAL, like Ca2+ -promoted Ras inactivator (CAPRI, or RASAL4), is a cytosolic protein that undergoes a rapid translocation to the plasma membrane in response to receptor-mediated elevation in the concentration of intracellular free Ca2+, a translocation that activates its ability to function as a RasGAP. However, unlike RASAL4, RASAL undergoes an oscillatory translocation to the plasma membrane that occurs in synchrony with repetitive Ca2+ spikes. Its tandem C2 domains bind phospholipids upon an elevation in the intracellular free Ca2+ concentration ([Ca2+]i) [].
Protein Domain
Type: Domain
Description: GAP1 (GTPase-activating protein 1) family members include RASA2 (GAP1m), RASAL (RASAL1), GAP1(IP4BP or RASA3), and CAPRI (RASA4). They all display Ras GAP activity. With the exception of RASA2, they all possess an arginine finger-dependent GAP activity on Rap1 [, ]. They contain N-terminal tandem C2 domain repeats, a centrally located Ras-GAP domain, and a PH (pleckstrin homology) domain containing a Btk motif [].This entry represents the PH domain of Ras GTPase-activating protein 4 (RASA4, also known as CAPRI). Both CAPRI and RASAL are calcium-activated RasGAPs that inactivate Ras at the plasma membrane. Its tandem C2 domains bind phospholipids upon an elevation in the intracellular free Ca2+ concentration ([Ca2+]i). CAPRI and RASAL differ in that CAPRI is an amplitude sensor while RASAL senses calcium oscillations [, ]. This difference between them resides not in their C2 domains, but in their PH domains leading to speculation that this might reflect an association with either phosphoinositides and/or proteins [].
Publication
First Author: Jin H
Year: 2007
Journal: Proc Natl Acad Sci U S A
Title: Epigenetic silencing of a Ca(2+)-regulated Ras GTPase-activating protein RASAL defines a new mechanism of Ras activation in human cancers.
Volume: 104
Issue: 30
Pages: 12353-8
Publication
First Author: Dai Y
Year: 2011
Journal: J Biol Chem
Title: Ca2+-dependent monomer and dimer formation switches CAPRI Protein between Ras GTPase-activating protein (GAP) and RapGAP activities.
Volume: 286
Issue: 22
Pages: 19905-16
Protein Domain
Type: Domain
Description: GAP1 (GTPase-activating protein 1) family members include RASA2 (GAP1m), RASAL (RASAL1), GAP1(IP4BP or RASA3), and CAPRI (RASA4). They all display Ras GAP activity. With the exception of RASA2, they all possess an arginine finger-dependent GAP activity on Rap1 [, ]. They contain N-terminal tandem C2 domain repeats, a centrally located Ras-GAP domain, and a PH (pleckstrin homology) domain containing a Btk motif [].This entry represents the RasGAP domain of RASAL. RASAL, like Ca2+ -promoted Ras inactivator (CAPRI, or RASA4), is a cytosolic protein that undergoes a rapid translocation to the plasma membrane in response to receptor-mediated elevation in the concentration of intracellular free Ca2+, a translocation that activates its ability to function as a RasGAP. Its tandem C2 domains bind phospholipids upon an elevation in the intracellular free Ca2+ concentration ([Ca2+]i). CAPRI and RASAL differ in that CAPRI is an amplitude sensor while RASAL senses calcium oscillations [, ]. This difference between them resides not in their C2 domains, but in their PH domains leading to speculation that this might reflect an association with either phosphoinositides and/or proteins [].
Protein
Organism: Mus musculus/domesticus
Length: 123  
Fragment?: true
Protein
Organism: Mus musculus/domesticus
Length: 297  
Fragment?: false
Protein
Organism: Mus musculus/domesticus
Length: 847  
Fragment?: false
Protein
Organism: Mus musculus/domesticus
Length: 848  
Fragment?: false
Protein
Organism: Mus musculus/domesticus
Length: 799  
Fragment?: false
Protein
Organism: Mus musculus/domesticus
Length: 834  
Fragment?: false
Protein
Organism: Mus musculus/domesticus
Length: 834  
Fragment?: false
Protein
Organism: Mus musculus/domesticus
Length: 802  
Fragment?: false