Type |
Details |
Score |
Gene |
Type: |
gene |
Organism: |
human |
|
•
•
•
•
•
|
Gene |
Type: |
gene |
Organism: |
frog, western clawed |
|
•
•
•
•
•
|
Gene |
|
•
•
•
•
•
|
Gene |
Type: |
gene |
Organism: |
dog, domestic |
|
•
•
•
•
•
|
Gene |
Type: |
gene |
Organism: |
chimpanzee |
|
•
•
•
•
•
|
Gene |
Type: |
gene |
Organism: |
cattle |
|
•
•
•
•
•
|
Gene |
Type: |
gene |
Organism: |
chicken |
|
•
•
•
•
•
|
Gene |
Type: |
gene |
Organism: |
zebrafish |
|
•
•
•
•
•
|
Gene |
Type: |
gene |
Organism: |
macaque, rhesus |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Gene |
Type: |
gene |
Organism: |
human |
|
•
•
•
•
•
|
GXD Expression |
Probe: |
MGI:6181917 |
Assay Type: |
RNA in situ |
Annotation Date: |
2018-07-25 |
Strength: |
Present |
Sex: |
Not Specified |
Emaps: |
EMAPS:1689419 |
Pattern: |
Not Specified |
Stage: |
TS19 |
Assay Id: |
MGI:6191190 |
Age: |
embryonic day 11.5 |
|
|
Specimen Label: |
Table S2 - E11.5 - Rasa2 |
Detected: |
true |
Specimen Num: |
1 |
|
•
•
•
•
•
|
GXD Expression |
Probe: |
MGI:6181917 |
Assay Type: |
RNA in situ |
Annotation Date: |
2018-07-25 |
Strength: |
Present |
Sex: |
Male |
Emaps: |
EMAPS:1689426 |
Pattern: |
Not Specified |
Stage: |
TS26 |
Assay Id: |
MGI:6191190 |
Age: |
embryonic day 18.5 |
|
|
Specimen Label: |
Table S2 - E18.5 - Rasa2 |
Detected: |
true |
Specimen Num: |
4 |
|
•
•
•
•
•
|
GXD Expression |
Probe: |
MGI:6181917 |
Assay Type: |
RNA in situ |
Annotation Date: |
2018-07-25 |
Strength: |
Present |
Sex: |
Male |
Emaps: |
EMAPS:1689428 |
Pattern: |
Not Specified |
Stage: |
TS28 |
Assay Id: |
MGI:6191190 |
Age: |
postnatal day 28 |
|
|
Specimen Label: |
Table S2 - P28 - Rasa2 |
Detected: |
true |
Specimen Num: |
7 |
|
•
•
•
•
•
|
GXD Expression |
Probe: |
MGI:6181917 |
Assay Type: |
RNA in situ |
Annotation Date: |
2018-07-25 |
Strength: |
Present |
Sex: |
Not Specified |
Emaps: |
EMAPS:1689421 |
Pattern: |
Not Specified |
Stage: |
TS21 |
Assay Id: |
MGI:6191190 |
Age: |
embryonic day 13.5 |
|
|
Specimen Label: |
Table S2 - E13.5 - Rasa2 |
Detected: |
true |
Specimen Num: |
2 |
|
•
•
•
•
•
|
GXD Expression |
Probe: |
MGI:6181917 |
Assay Type: |
RNA in situ |
Annotation Date: |
2018-07-25 |
Strength: |
Present |
Sex: |
Male |
Emaps: |
EMAPS:1689424 |
Pattern: |
Not Specified |
Stage: |
TS24 |
Assay Id: |
MGI:6191190 |
Age: |
embryonic day 15.5 |
|
|
Specimen Label: |
Table S2 - E15.5 - Rasa2 |
Detected: |
true |
Specimen Num: |
3 |
|
•
•
•
•
•
|
GXD Expression |
Probe: |
MGI:6181917 |
Assay Type: |
RNA in situ |
Annotation Date: |
2018-07-25 |
Strength: |
Present |
Sex: |
Male |
Emaps: |
EMAPS:1689428 |
Pattern: |
Not Specified |
Stage: |
TS28 |
Assay Id: |
MGI:6191190 |
Age: |
postnatal day 4 |
|
|
Specimen Label: |
Table S2 - P4 - Rasa2 |
Detected: |
true |
Specimen Num: |
5 |
|
•
•
•
•
•
|
GXD Expression |
Probe: |
MGI:6181917 |
Assay Type: |
RNA in situ |
Annotation Date: |
2018-07-25 |
Strength: |
Present |
Sex: |
Male |
Emaps: |
EMAPS:1689428 |
Pattern: |
Not Specified |
Stage: |
TS28 |
Assay Id: |
MGI:6191190 |
Age: |
postnatal day 14 |
|
|
Specimen Label: |
Table S2 - P14 - Rasa2 |
Detected: |
true |
Specimen Num: |
6 |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
Mus caroli |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
Mus pahari |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
Mus spretus |
|
•
•
•
•
•
|
Publication |
First Author: |
Fukuda M |
Year: |
1996 |
Journal: |
J Biol Chem |
Title: |
Structure-function relationships of the mouse Gap1m. Determination of the inositol 1,3,4,5-tetrakisphosphate-binding domain. |
Volume: |
271 |
Issue: |
31 |
Pages: |
18838-42 |
|
•
•
•
•
•
|
GXD Expression |
Probe: |
MGI:6444383 |
Assay Type: |
RT-PCR |
Annotation Date: |
2020-07-29 |
Strength: |
Present |
Sex: |
Not Specified |
Emaps: |
EMAPS:1716828 |
|
Stage: |
TS28 |
Assay Id: |
MGI:6446149 |
Age: |
postnatal week 5 |
|
|
Specimen Label: |
wild type control |
Detected: |
true |
Specimen Num: |
1 |
|
•
•
•
•
•
|
GXD Expression |
Probe: |
MGI:6444383 |
Assay Type: |
RT-PCR |
Annotation Date: |
2020-07-29 |
Strength: |
Present |
Sex: |
Not Specified |
Emaps: |
EMAPS:1716828 |
|
Stage: |
TS28 |
Assay Id: |
MGI:6446149 |
Age: |
postnatal week 5 |
|
|
Specimen Label: |
miR-183C |
Detected: |
true |
Specimen Num: |
2 |
|
•
•
•
•
•
|
Publication |
First Author: |
Kenney-Hunt JP |
Year: |
2006 |
Journal: |
Mamm Genome |
Title: |
Quantitative trait loci for body size components in mice. |
Volume: |
17 |
Issue: |
6 |
Pages: |
526-37 |
|
•
•
•
•
•
|
Publication |
First Author: |
Lumayag S |
Year: |
2013 |
Journal: |
Proc Natl Acad Sci U S A |
Title: |
Inactivation of the microRNA-183/96/182 cluster results in syndromic retinal degeneration. |
Volume: |
110 |
Issue: |
6 |
Pages: |
E507-16 |
|
•
•
•
•
•
|
Publication |
First Author: |
Shanghai Model Organisms Center |
Year: |
2017 |
Journal: |
MGI Direct Data Submission |
Title: |
Information obtained from the Shanghai Model Organisms Center (SMOC), Shanghai, China |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Ko MS |
Year: |
2000 |
Journal: |
Development |
Title: |
Large-scale cDNA analysis reveals phased gene expression patterns during preimplantation mouse development. |
Volume: |
127 |
Issue: |
8 |
Pages: |
1737-49 |
|
•
•
•
•
•
|
Publication |
First Author: |
Thompson CL |
Year: |
2014 |
Journal: |
Neuron |
Title: |
A high-resolution spatiotemporal atlas of gene expression of the developing mouse brain. |
Volume: |
83 |
Issue: |
2 |
Pages: |
309-323 |
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Informatics Scientific Curators |
Year: |
2002 |
|
Title: |
Mouse Genome Informatics Computational Sequence to Gene Associations for FANTOM2 data |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Lennon G |
Year: |
1999 |
Journal: |
Database Download |
Title: |
WashU-HHMI Mouse EST Project |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Helmholtz Zentrum Muenchen GmbH |
Year: |
2010 |
Journal: |
MGI Direct Data Submission |
Title: |
Alleles produced for the EUCOMM and EUCOMMTools projects by the Helmholtz Zentrum Muenchen GmbH (Hmgu) |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
The Gene Ontology Consortium |
Year: |
2014 |
|
Title: |
Automated transfer of experimentally-verified manual GO annotation data to mouse-rat orthologs |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
UniProt-GOA |
Year: |
2012 |
|
Title: |
Gene Ontology annotation based on UniProtKB/Swiss-Prot Subcellular Location vocabulary mapping, accompanied by conservative changes to GO terms applied by UniProt |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
DDB, FB, MGI, GOA, ZFIN curators |
Year: |
2001 |
|
Title: |
Gene Ontology annotation through association of InterPro records with GO terms |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Magdaleno S |
Year: |
2006 |
Journal: |
PLoS Biol |
Title: |
BGEM: an in situ hybridization database of gene expression in the embryonic and adult mouse nervous system. |
Volume: |
4 |
Issue: |
4 |
Pages: |
e86 |
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Informatics Scientific Curators |
Year: |
2003 |
|
Title: |
MGI Sequence Curation Reference |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Informatics Scientific Curators |
Year: |
2002 |
|
Title: |
Chromosome assignment of mouse genes using the Mouse Genome Sequencing Consortium (MGSC) assembly and the ENSEMBL Database |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Carninci P |
Year: |
2005 |
Journal: |
Science |
Title: |
The transcriptional landscape of the mammalian genome. |
Volume: |
309 |
Issue: |
5740 |
Pages: |
1559-63 |
|
•
•
•
•
•
|
Publication |
First Author: |
Kawai J |
Year: |
2001 |
Journal: |
Nature |
Title: |
Functional annotation of a full-length mouse cDNA collection. |
Volume: |
409 |
Issue: |
6821 |
Pages: |
685-90 |
|
•
•
•
•
•
|
Publication |
First Author: |
Zambrowicz BP |
Year: |
2003 |
Journal: |
Proc Natl Acad Sci U S A |
Title: |
Wnk1 kinase deficiency lowers blood pressure in mice: a gene-trap screen to identify potential targets for therapeutic intervention. |
Volume: |
100 |
Issue: |
24 |
Pages: |
14109-14 |
|
•
•
•
•
•
|
Publication |
First Author: |
GemPharmatech |
Year: |
2020 |
|
Title: |
GemPharmatech Website. |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Informatics (MGI) and National Center for Biotechnology Information (NCBI) |
Year: |
2008 |
Journal: |
Database Download |
Title: |
Mouse Gene Trap Data Load from dbGSS |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
UniProt-GOA |
Year: |
2012 |
|
Title: |
Gene Ontology annotation based on UniProtKB/Swiss-Prot keyword mapping |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
GOA curators |
Year: |
2016 |
|
Title: |
Automatic transfer of experimentally verified manual GO annotation data to orthologs using Ensembl Compara |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
The Jackson Laboratory Mouse Radiation Hybrid Database |
Year: |
2004 |
Journal: |
Database Release |
Title: |
Mouse T31 Radiation Hybrid Data Load |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Okazaki Y |
Year: |
2002 |
Journal: |
Nature |
Title: |
Analysis of the mouse transcriptome based on functional annotation of 60,770 full-length cDNAs. |
Volume: |
420 |
Issue: |
6915 |
Pages: |
563-73 |
|
•
•
•
•
•
|
Publication |
First Author: |
Diez-Roux G |
Year: |
2011 |
Journal: |
PLoS Biol |
Title: |
A high-resolution anatomical atlas of the transcriptome in the mouse embryo. |
Volume: |
9 |
Issue: |
1 |
Pages: |
e1000582 |
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Informatics Scientific Curators |
Year: |
2002 |
|
Title: |
Mouse Genome Informatics Computational Sequence to Gene Associations |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Informatics Scientific Curators |
Year: |
2010 |
Journal: |
Database Download |
Title: |
Mouse Microarray Data Integration in Mouse Genome Informatics, the Affymetrix GeneChip Mouse Genome U74 Array Platform (A, B, C v2). |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Database and National Center for Biotechnology Information |
Year: |
2000 |
Journal: |
Database Release |
Title: |
Entrez Gene Load |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Allen Institute for Brain Science |
Year: |
2004 |
Journal: |
Allen Institute |
Title: |
Allen Brain Atlas: mouse riboprobes |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Informatics Scientific Curators |
Year: |
2009 |
Journal: |
Database Download |
Title: |
Mouse Microarray Data Integration in Mouse Genome Informatics, the Affymetrix GeneChip Mouse Gene 1.0 ST Array Platform |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Informatics (MGI) and The National Center for Biotechnology Information (NCBI) |
Year: |
2010 |
Journal: |
Database Download |
Title: |
Consensus CDS project |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Informatics Group |
Year: |
2003 |
Journal: |
Database Procedure |
Title: |
Automatic Encodes (AutoE) Reference |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Bairoch A |
Year: |
1999 |
Journal: |
Database Release |
Title: |
SWISS-PROT Annotated protein sequence database |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Informatics Scientific Curators |
Year: |
2005 |
|
Title: |
Obtaining and Loading Genome Assembly Coordinates from Ensembl Annotations |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Informatics |
Year: |
2010 |
Journal: |
Database Release |
Title: |
Protein Ontology Association Load. |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Informatics Scientific Curators |
Year: |
2005 |
|
Title: |
Obtaining and loading genome assembly coordinates from NCBI annotations |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Informatics Scientific Curators |
Year: |
2009 |
Journal: |
Database Download |
Title: |
Mouse Microarray Data Integration in Mouse Genome Informatics, the Affymetrix GeneChip Mouse Genome 430 2.0 Array Platform |
|
|
|
|
•
•
•
•
•
|
Allele |
Name: |
RAS p21 protein activator 2; endonuclease-mediated mutation 2, Shanghai Model Organisms Center |
Allele Type: |
Endonuclease-mediated |
Attribute String: |
Null/knockout |
|
•
•
•
•
•
|
Strain |
Attribute String: |
coisogenic, endonuclease-mediated mutation, mutant strain |
|
•
•
•
•
•
|
Allele |
Name: |
RAS p21 protein activator 2; endonuclease-mediated mutation 1, Shanghai Model Organisms Center |
Allele Type: |
Endonuclease-mediated |
Attribute String: |
Conditional ready, No functional change |
|
•
•
•
•
•
|
Strain |
Attribute String: |
coisogenic, endonuclease-mediated mutation, mutant strain |
|
•
•
•
•
•
|
Publication |
First Author: |
Lockyer PJ |
Year: |
1997 |
Journal: |
Curr Biol |
Title: |
Distinct subcellular localisations of the putative inositol 1,3,4,5-tetrakisphosphate receptors GAP1IP4BP and GAP1m result from the GAP1IP4BP PH domain directing plasma membrane targeting. |
Volume: |
7 |
Issue: |
12 |
Pages: |
1007-10 |
|
•
•
•
•
•
|
Protein Domain |
Type: |
Domain |
Description: |
GAP1 (GTPase-activating protein 1) family members include RASA2 (GAP1m), RASAL (RASAL1), GAP1(IP4BP or RASA3), and CAPRI (RASA4). They all display Ras GAP activity. With the exception of RASA2, they all possess an arginine finger-dependent GAP activity on Rap1 [, ]. They contain N-terminal tandem C2 domain repeats, a centrally located Ras-GAP domain, and a PH (pleckstrin homology) domain containing a Btk motif [].This entry represents the PH domain of Ras GTPase-activating protein 2 (RASA2, also known as GAP1m). The tandem C2 domains of RASA2, like those of GAP1IP4BP, do not contain the conserved C2 motif that is known to be required for calcium-dependent phospholipid binding. RASA2 is regulated by the binding of its PH domains to phophoinositides, PIP3 (phosphatidylinositol 3,4,5-trisphosphate) []. It suppresses RAS, enhancing the weak intrinsic GTPase activity of RAS proteins resulting in the inactive GDP-bound form of RAS, allowing control of cellular proliferation and differentiation []. RASA2 also binds to inositol 1,3,4,5-tetrakisphosphate (IP4) []. |
|
•
•
•
•
•
|
Publication |
First Author: |
Lockyer PJ |
Year: |
1999 |
Journal: |
Curr Biol |
Title: |
Identification of the ras GTPase-activating protein GAP1(m) as a phosphatidylinositol-3,4,5-trisphosphate-binding protein in vivo. |
Volume: |
9 |
Issue: |
5 |
Pages: |
265-8 |
|
•
•
•
•
•
|
Publication |
First Author: |
Schurmans S |
Year: |
2015 |
Journal: |
Adv Biol Regul |
Title: |
The Ras/Rap GTPase activating protein RASA3: from gene structure to in vivo functions. |
Volume: |
57 |
|
Pages: |
153-61 |
|
•
•
•
•
•
|
Protein Domain |
Type: |
Domain |
Description: |
GAP1 (GTPase-activating protein 1) family members include RASA2 (GAP1m), RASAL (RASAL1), GAP1(IP4BP or RASA3), and CAPRI (RASA4). They all display Ras GAP activity. With the exception of RASA2, they all possess an arginine finger-dependent GAP activity on Rap1 [, ]. They contain N-terminal tandem C2 domain repeats, a centrally located Ras-GAP domain, and a PH (pleckstrin homology) domain containing a Btk motif [].This entry represents the PH domain of Ras GTPase-activating protein 3 (RASA3, also known as GAP1 or IP4BP). The RASA3 PH domain binds to phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P3) and I(1,3,4,5)P4 []. Its C2 domains, like those of RASA2 (GAP1M), do not contain the C2 motif that is known to be required for calcium-dependent phospholipid binding []. |
|
•
•
•
•
•
|
Publication |
First Author: |
Yarwood S |
Year: |
2006 |
Journal: |
Biochem Soc Trans |
Title: |
The GAP1 family of GTPase-activating proteins: spatial and temporal regulators of small GTPase signalling. |
Volume: |
34 |
Issue: |
Pt 5 |
Pages: |
846-50 |
|
•
•
•
•
•
|
Publication |
First Author: |
Kupzig S |
Year: |
2009 |
Journal: |
Mol Cell Biol |
Title: |
The ability of GAP1IP4BP to function as a Rap1 GTPase-activating protein (GAP) requires its Ras GAP-related domain and an arginine finger rather than an asparagine thumb. |
Volume: |
29 |
Issue: |
14 |
Pages: |
3929-40 |
|
•
•
•
•
•
|
Publication |
First Author: |
Kupzig S |
Year: |
2006 |
Journal: |
J Biol Chem |
Title: |
GAP1 family members constitute bifunctional Ras and Rap GTPase-activating proteins. |
Volume: |
281 |
Issue: |
15 |
Pages: |
9891-900 |
|
•
•
•
•
•
|
Protein Domain |
Type: |
Family |
Description: |
GAP1 (GTPase-activating protein 1) family members include RASA2 (GAP1m), RASAL (RASAL1), GAP1(IP4BP or RASA3), and CAPRI (RASA4). They all display Ras GAP activity. With the exception of RASA2, they all possess an arginine finger-dependent GAP activity on Rap1 [, ]. They contain N-terminal tandem C2 domain repeats, a centrally located Ras-GAP domain, and a PH (pleckstrin homology) domain containing a Btk motif [].RASAL, like Ca2+ -promoted Ras inactivator (CAPRI, or RASAL4), is a cytosolic protein that undergoes a rapid translocation to the plasma membrane in response to receptor-mediated elevation in the concentration of intracellular free Ca2+, a translocation that activates its ability to function as a RasGAP. However, unlike RASAL4, RASAL undergoes an oscillatory translocation to the plasma membrane that occurs in synchrony with repetitive Ca2+ spikes. Its tandem C2 domains bind phospholipids upon an elevation in the intracellular free Ca2+ concentration ([Ca2+]i) []. |
|
•
•
•
•
•
|
Protein Domain |
Type: |
Domain |
Description: |
GAP1 (GTPase-activating protein 1) family members include RASA2 (GAP1m), RASAL (RASAL1), GAP1(IP4BP or RASA3), and CAPRI (RASA4). They all display Ras GAP activity. With the exception of RASA2, they all possess an arginine finger-dependent GAP activity on Rap1 [, ]. They contain N-terminal tandem C2 domain repeats, a centrally located Ras-GAP domain, and a PH (pleckstrin homology) domain containing a Btk motif [].This entry represents the PH domain of Ras GTPase-activating protein 4 (RASA4, also known as CAPRI). Both CAPRI and RASAL are calcium-activated RasGAPs that inactivate Ras at the plasma membrane. Its tandem C2 domains bind phospholipids upon an elevation in the intracellular free Ca2+ concentration ([Ca2+]i). CAPRI and RASAL differ in that CAPRI is an amplitude sensor while RASAL senses calcium oscillations [, ]. This difference between them resides not in their C2 domains, but in their PH domains leading to speculation that this might reflect an association with either phosphoinositides and/or proteins []. |
|
•
•
•
•
•
|
Publication |
First Author: |
Jin H |
Year: |
2007 |
Journal: |
Proc Natl Acad Sci U S A |
Title: |
Epigenetic silencing of a Ca(2+)-regulated Ras GTPase-activating protein RASAL defines a new mechanism of Ras activation in human cancers. |
Volume: |
104 |
Issue: |
30 |
Pages: |
12353-8 |
|
•
•
•
•
•
|
Publication |
First Author: |
Dai Y |
Year: |
2011 |
Journal: |
J Biol Chem |
Title: |
Ca2+-dependent monomer and dimer formation switches CAPRI Protein between Ras GTPase-activating protein (GAP) and RapGAP activities. |
Volume: |
286 |
Issue: |
22 |
Pages: |
19905-16 |
|
•
•
•
•
•
|
Protein Domain |
Type: |
Domain |
Description: |
GAP1 (GTPase-activating protein 1) family members include RASA2 (GAP1m), RASAL (RASAL1), GAP1(IP4BP or RASA3), and CAPRI (RASA4). They all display Ras GAP activity. With the exception of RASA2, they all possess an arginine finger-dependent GAP activity on Rap1 [, ]. They contain N-terminal tandem C2 domain repeats, a centrally located Ras-GAP domain, and a PH (pleckstrin homology) domain containing a Btk motif [].This entry represents the RasGAP domain of RASAL. RASAL, like Ca2+ -promoted Ras inactivator (CAPRI, or RASA4), is a cytosolic protein that undergoes a rapid translocation to the plasma membrane in response to receptor-mediated elevation in the concentration of intracellular free Ca2+, a translocation that activates its ability to function as a RasGAP. Its tandem C2 domains bind phospholipids upon an elevation in the intracellular free Ca2+ concentration ([Ca2+]i). CAPRI and RASAL differ in that CAPRI is an amplitude sensor while RASAL senses calcium oscillations [, ]. This difference between them resides not in their C2 domains, but in their PH domains leading to speculation that this might reflect an association with either phosphoinositides and/or proteins []. |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
123
 |
Fragment?: |
true |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
297
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
847
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
848
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
799
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
834
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
834
 |
Fragment?: |
false |
|
•
•
•
•
•
|