Type |
Details |
Score |
Gene |
Type: |
gene |
Organism: |
human |
|
•
•
•
•
•
|
Gene |
Type: |
gene |
Organism: |
frog, western clawed |
|
•
•
•
•
•
|
Gene |
Type: |
gene |
Organism: |
dog, domestic |
|
•
•
•
•
•
|
Gene |
Type: |
gene |
Organism: |
chimpanzee |
|
•
•
•
•
•
|
Gene |
|
•
•
•
•
•
|
Gene |
Type: |
gene |
Organism: |
cattle |
|
•
•
•
•
•
|
Gene |
Type: |
gene |
Organism: |
chicken |
|
•
•
•
•
•
|
Gene |
Type: |
gene |
Organism: |
zebrafish |
|
•
•
•
•
•
|
Gene |
Type: |
gene |
Organism: |
macaque, rhesus |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Domain |
Type: |
Family |
Description: |
Ribosomes are the particles that catalyse mRNA-directed protein synthesis in all organisms. The codons of the mRNA are exposed on the ribosome to allow tRNA binding. This leads to the incorporation of amino acids into the growing polypeptide chain in accordance with the genetic information. Incoming amino acid monomers enter the ribosomal A site in the form of aminoacyl-tRNAs complexed with elongation factor Tu (EF-Tu) and GTP. The growing polypeptide chain, situated in the P site as peptidyl-tRNA, is then transferred to aminoacyl-tRNA and the new peptidyl-tRNA, extended by one residue, is translocated to the P site with the aid the elongation factor G (EF-G) and GTP as the deacylated tRNA is released from the ribosome through one or more exit sites [, ]. About 2/3 of the mass of the ribosome consists of RNA and 1/3 of protein. The proteins are named in accordance with the subunit of the ribosome which they belong to - the small (S1 to S31) and the large (L1 to L44). Usually they decorate the rRNA cores of the subunits. Many ribosomal proteins, particularly those of the large subunit, are composed of a globular, surfaced-exposed domain with long finger-like projections that extend into the rRNA core to stabilise its structure. Most of the proteins interact with multiple RNA elements, often from different domains. In the large subunit, about 1/3 of the 23S rRNA nucleotides are at least in van der Waal's contact with protein, and L22 interacts with all six domains of the 23S rRNA. Proteins S4 and S7, which initiate assembly of the 16S rRNA, are located at junctions of five and four RNA helices, respectively. In this way proteins serve to organise and stabilise the rRNA tertiary structure. While the crucial activities of decoding and peptide transfer are RNA based, proteins play an active role in functions that may have evolved to streamline the process of protein synthesis. In addition to their function in the ribosome, many ribosomal proteins have some function 'outside' the ribosome [, ].Ribosome-binding factor A [](gene rbfA) is a bacterial protein that associates with free 30S ribosomal subunits. It does not associate with 30S subunits that are part of 70S ribosomes or polysomes. It is essential for efficient processing of 16S rRNA. Ribosome-binding factor A is a protein of from 13 to 15 Kd which is found in most bacteria. A putative chloroplastic form seems to exist in plants. |
|
•
•
•
•
•
|
Gene |
Type: |
gene |
Organism: |
human |
|
•
•
•
•
•
|
Publication |
First Author: |
Bylund GO |
Year: |
1998 |
Journal: |
J Bacteriol |
Title: |
RimM and RbfA are essential for efficient processing of 16S rRNA in Escherichia coli. |
Volume: |
180 |
Issue: |
1 |
Pages: |
73-82 |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
350
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
350
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Publication |
First Author: |
Ramakrishnan V |
Year: |
2001 |
Journal: |
Curr Opin Struct Biol |
Title: |
Atomic structures at last: the ribosome in 2000. |
Volume: |
11 |
Issue: |
2 |
Pages: |
144-54 |
|
•
•
•
•
•
|
Publication |
First Author: |
Maguire BA |
Year: |
2001 |
Journal: |
Cell |
Title: |
The ribosome in focus. |
Volume: |
104 |
Issue: |
6 |
Pages: |
813-6 |
|
•
•
•
•
•
|
Publication |
First Author: |
Chandra Sanyal S |
Year: |
2000 |
Journal: |
Curr Opin Struct Biol |
Title: |
The end of the beginning: structural studies of ribosomal proteins. |
Volume: |
10 |
Issue: |
6 |
Pages: |
633-6 |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
Mus caroli |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
Mus pahari |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
Mus spretus |
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Informatics Scientific Curators |
Year: |
2002 |
|
Title: |
Function or Process or Component Unknown following Literature Review |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Lennon G |
Year: |
1999 |
Journal: |
Database Download |
Title: |
WashU-HHMI Mouse EST Project |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
UniProt-GOA |
Year: |
2012 |
|
Title: |
Gene Ontology annotation based on UniProtKB/Swiss-Prot Subcellular Location vocabulary mapping, accompanied by conservative changes to GO terms applied by UniProt |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Carninci P |
Year: |
2005 |
Journal: |
Science |
Title: |
The transcriptional landscape of the mammalian genome. |
Volume: |
309 |
Issue: |
5740 |
Pages: |
1559-63 |
|
•
•
•
•
•
|
Publication |
First Author: |
Kawai J |
Year: |
2001 |
Journal: |
Nature |
Title: |
Functional annotation of a full-length mouse cDNA collection. |
Volume: |
409 |
Issue: |
6821 |
Pages: |
685-90 |
|
•
•
•
•
•
|
Publication |
First Author: |
MGD Nomenclature Committee |
Year: |
1995 |
|
Title: |
Nomenclature Committee Use |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Zambrowicz BP |
Year: |
2003 |
Journal: |
Proc Natl Acad Sci U S A |
Title: |
Wnk1 kinase deficiency lowers blood pressure in mice: a gene-trap screen to identify potential targets for therapeutic intervention. |
Volume: |
100 |
Issue: |
24 |
Pages: |
14109-14 |
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Informatics (MGI) and National Center for Biotechnology Information (NCBI) |
Year: |
2008 |
Journal: |
Database Download |
Title: |
Mouse Gene Trap Data Load from dbGSS |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
UniProt-GOA |
Year: |
2012 |
|
Title: |
Gene Ontology annotation based on UniProtKB/Swiss-Prot keyword mapping |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
The Jackson Laboratory Mouse Radiation Hybrid Database |
Year: |
2004 |
Journal: |
Database Release |
Title: |
Mouse T31 Radiation Hybrid Data Load |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Okazaki Y |
Year: |
2002 |
Journal: |
Nature |
Title: |
Analysis of the mouse transcriptome based on functional annotation of 60,770 full-length cDNAs. |
Volume: |
420 |
Issue: |
6915 |
Pages: |
563-73 |
|
•
•
•
•
•
|
Publication |
First Author: |
Diez-Roux G |
Year: |
2011 |
Journal: |
PLoS Biol |
Title: |
A high-resolution anatomical atlas of the transcriptome in the mouse embryo. |
Volume: |
9 |
Issue: |
1 |
Pages: |
e1000582 |
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Informatics Scientific Curators |
Year: |
2002 |
|
Title: |
Mouse Genome Informatics Computational Sequence to Gene Associations |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Informatics Scientific Curators |
Year: |
2010 |
Journal: |
Database Download |
Title: |
Mouse Microarray Data Integration in Mouse Genome Informatics, the Affymetrix GeneChip Mouse Genome U74 Array Platform (A, B, C v2). |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
MGI Genome Annotation Group and UniGene Staff |
Year: |
2015 |
Journal: |
Database Download |
Title: |
MGI-UniGene Interconnection Effort |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Database and National Center for Biotechnology Information |
Year: |
2000 |
Journal: |
Database Release |
Title: |
Entrez Gene Load |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Allen Institute for Brain Science |
Year: |
2004 |
Journal: |
Allen Institute |
Title: |
Allen Brain Atlas: mouse riboprobes |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Informatics Scientific Curators |
Year: |
2009 |
Journal: |
Database Download |
Title: |
Mouse Microarray Data Integration in Mouse Genome Informatics, the Affymetrix GeneChip Mouse Gene 1.0 ST Array Platform |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Informatics (MGI) and The National Center for Biotechnology Information (NCBI) |
Year: |
2010 |
Journal: |
Database Download |
Title: |
Consensus CDS project |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Informatics Group |
Year: |
2003 |
Journal: |
Database Procedure |
Title: |
Automatic Encodes (AutoE) Reference |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Bairoch A |
Year: |
1999 |
Journal: |
Database Release |
Title: |
SWISS-PROT Annotated protein sequence database |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Informatics Scientific Curators |
Year: |
2005 |
|
Title: |
Obtaining and Loading Genome Assembly Coordinates from Ensembl Annotations |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Informatics |
Year: |
2010 |
Journal: |
Database Release |
Title: |
Protein Ontology Association Load. |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Informatics Scientific Curators |
Year: |
2005 |
|
Title: |
Obtaining and loading genome assembly coordinates from NCBI annotations |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Informatics Scientific Curators |
Year: |
2009 |
Journal: |
Database Download |
Title: |
Mouse Microarray Data Integration in Mouse Genome Informatics, the Affymetrix GeneChip Mouse Genome 430 2.0 Array Platform |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Goto S |
Year: |
2011 |
Journal: |
EMBO J |
Title: |
RsgA releases RbfA from 30S ribosome during a late stage of ribosome biosynthesis. |
Volume: |
30 |
Issue: |
1 |
Pages: |
104-14 |
|
•
•
•
•
•
|
Publication |
First Author: |
Jeganathan A |
Year: |
2015 |
Journal: |
RNA |
Title: |
The C-terminal helix in the YjeQ zinc-finger domain catalyzes the release of RbfA during 30S ribosome subunit assembly. |
Volume: |
21 |
Issue: |
6 |
Pages: |
1203-16 |
|
•
•
•
•
•
|
Publication |
First Author: |
Averina OA |
Year: |
2022 |
Journal: |
Int J Mol Sci |
Title: |
Mitochondrial rRNA Methylation by Mettl15 Contributes to the Exercise and Learning Capability in Mice. |
Volume: |
23 |
Issue: |
11 |
|
|
•
•
•
•
•
|
Publication |
First Author: |
Daigle DM |
Year: |
2004 |
Journal: |
J Bacteriol |
Title: |
Studies of the interaction of Escherichia coli YjeQ with the ribosome in vitro. |
Volume: |
186 |
Issue: |
5 |
Pages: |
1381-7 |
|
•
•
•
•
•
|
Publication |
First Author: |
Himeno H |
Year: |
2004 |
Journal: |
Nucleic Acids Res |
Title: |
A novel GTPase activated by the small subunit of ribosome. |
Volume: |
32 |
Issue: |
17 |
Pages: |
5303-9 |
|
•
•
•
•
•
|
Publication |
First Author: |
Campbell TL |
Year: |
2005 |
Journal: |
Biochem J |
Title: |
Characterization of the Bacillus subtilis GTPase YloQ and its role in ribosome function. |
Volume: |
389 |
Issue: |
Pt 3 |
Pages: |
843-52 |
|
•
•
•
•
•
|
Publication |
First Author: |
Jomaa A |
Year: |
2011 |
Journal: |
RNA |
Title: |
Cryo-electron microscopy structure of the 30S subunit in complex with the YjeQ biogenesis factor. |
Volume: |
17 |
Issue: |
11 |
Pages: |
2026-38 |
|
•
•
•
•
•
|
Protein Domain |
Type: |
Family |
Description: |
This entry contains Escherichia coli (strain K12) RsgA, which plays a role in the late maturation steps of the functional core of the 30S ribosomal subunit. It removes RbfA from mature, but not immature, 30S ribosomes in a GTP-dependent manner [, ], and binds the 30S subunit making contact with the head, platform and rRNA helix 44 [, ]. RsgA (sometimes known as YjeQ or EngC) is an unusual circulary permuted GTPase that catalyzes rapid hydrolysis of GTP with a slow catalytic turnover. It is dispensible for viability, but important for overall fitness. The intrinsic GTPase activity is stimulated by the presence of 30S (160-fold increase in kcat) or 70S (96 fold increase in kcat) ribosomes []. The GTPase is inhibited by aminoglycoside antibiotics such as neomycin and paromycin []streptomycin and spectinomycin []. This inhibition is not due to competition for binding sites on the 30S or 70S ribosome []. A mitochondrial version of RsgA has been characterized from Arabidopsis[]. |
|
•
•
•
•
•
|
Publication |
First Author: |
Guo Q |
Year: |
2011 |
Journal: |
Proc Natl Acad Sci U S A |
Title: |
Structural basis for the function of a small GTPase RsgA on the 30S ribosomal subunit maturation revealed by cryoelectron microscopy. |
Volume: |
108 |
Issue: |
32 |
Pages: |
13100-5 |
|
•
•
•
•
•
|
Publication |
First Author: |
Tzafrir I |
Year: |
2004 |
Journal: |
Plant Physiol |
Title: |
Identification of genes required for embryo development in Arabidopsis. |
Volume: |
135 |
Issue: |
3 |
Pages: |
1206-20 |
|
•
•
•
•
•
|
Publication |
First Author: |
Huang YJ |
Year: |
2003 |
Journal: |
J Mol Biol |
Title: |
Solution NMR structure of ribosome-binding factor A (RbfA), a cold-shock adaptation protein from Escherichia coli. |
Volume: |
327 |
Issue: |
2 |
Pages: |
521-36 |
|
•
•
•
•
•
|
Protein Domain |
Type: |
Homologous_superfamily |
Description: |
Ribosomes are the particles that catalyse mRNA-directed protein synthesis in all organisms. The codons of the mRNA are exposed on the ribosome to allow tRNA binding. This leads to the incorporation of amino acids into the growing polypeptide chain in accordance with the genetic information. Incoming amino acid monomers enter the ribosomal A site in the form of aminoacyl-tRNAs complexed with elongation factor Tu (EF-Tu) and GTP. The growing polypeptide chain, situated in the P site as peptidyl-tRNA, is then transferred to aminoacyl-tRNA and the new peptidyl-tRNA, extended by one residue, is translocated to the P site with the aid the elongation factor G (EF-G) and GTP as the deacylated tRNA is released from the ribosome through one or more exit sites [, ]. About 2/3 of the mass of the ribosome consists of RNA and 1/3 of protein. The proteins are named in accordance with the subunit of the ribosome which they belong to - the small (S1 to S31) and the large (L1 to L44). Usually they decorate the rRNA cores of the subunits. Many ribosomal proteins, particularly those of the large subunit, are composed of a globular, surfaced-exposed domain with long finger-like projections that extend into the rRNA core to stabilise its structure. Most of the proteins interact with multiple RNA elements, often from different domains. In the large subunit, about 1/3 of the 23S rRNA nucleotides are at least in van der Waal's contact with protein, and L22 interacts with all six domains of the 23S rRNA. Proteins S4 and S7, which initiate assembly of the 16S rRNA, are located at junctions of five and four RNA helices, respectively. In this way proteins serve to organise and stabilise the rRNA tertiary structure. While the crucial activities of decoding and peptide transfer are RNA based, proteins play an active role in functions that may have evolved to streamline the process of protein synthesis. In addition to their function in the ribosome, many ribosomal proteins have some function 'outside' the ribosome [, ].Ribosome-binding factor A [](gene rbfA) is a bacterial protein that associates with free 30S ribosomal subunits. It does not associate with 30S subunits that are part of 70S ribosomes or polysomes. It is essential for efficient processing of 16S rRNA. Ribosome-binding factor A is a protein of from 13 to 15 Kd which is found in most bacteria. A putative chloroplastic form seems to exist in plants.The structural domain of RbfA has an α-β fold containing three helices and three β-strands: alpha1-beta1-beta2-alpha2-alpha3-beta3. The structure has type-II KH-domain fold topology, related to conserved KH sequence family proteins whose beta-α-α-beta subunits are characterised by a helix-turn-helix motif with sequence signature GxxG at the turn. In RbfA, this beta-α-α-beta subunit is characterised by a helix-kink-helix motif in which the GxxG sequence is replaced by a conserved AxG sequence []. |
|
•
•
•
•
•
|