Type |
Details |
Score |
Gene |
Type: |
gene |
Organism: |
human |
|
•
•
•
•
•
|
Gene |
Type: |
gene |
Organism: |
frog, western clawed |
|
•
•
•
•
•
|
Gene |
Type: |
gene |
Organism: |
cattle |
|
•
•
•
•
•
|
Gene |
|
•
•
•
•
•
|
Gene |
Type: |
gene |
Organism: |
dog, domestic |
|
•
•
•
•
•
|
Gene |
Type: |
gene |
Organism: |
chimpanzee |
|
•
•
•
•
•
|
Gene |
Type: |
gene |
Organism: |
zebrafish |
|
•
•
•
•
•
|
Gene |
Type: |
gene |
Organism: |
macaque, rhesus |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Publication |
First Author: |
Takada T |
Year: |
2003 |
Journal: |
Genome Res |
Title: |
Species-specific class I gene expansions formed the telomeric 1 mb of the mouse major histocompatibility complex. |
Volume: |
13 |
Issue: |
4 |
Pages: |
589-600 |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
Mus caroli |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
Mus pahari |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
Mus spretus |
|
•
•
•
•
•
|
Publication |
First Author: |
Xiao S |
Year: |
2002 |
Journal: |
Annu Rev Biochem |
Title: |
Eukaryotic ribonuclease P: a plurality of ribonucleoprotein enzymes. |
Volume: |
71 |
|
Pages: |
165-89 |
|
•
•
•
•
•
|
Publication |
First Author: |
University of California, Davis |
Year: |
2010 |
Journal: |
MGI Direct Data Submission |
Title: |
Alleles produced for the KOMP project by the University of California, Davis |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
GOA curators, MGI curators |
Year: |
2001 |
|
Title: |
Gene Ontology annotation based on Enzyme Commission mapping |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
UniProt-GOA |
Year: |
2012 |
|
Title: |
Gene Ontology annotation based on UniProtKB/Swiss-Prot Subcellular Location vocabulary mapping, accompanied by conservative changes to GO terms applied by UniProt |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Informatics Scientific Curators |
Year: |
2002 |
|
Title: |
Chromosome assignment of mouse genes using the Mouse Genome Sequencing Consortium (MGSC) assembly and the ENSEMBL Database |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Kawai J |
Year: |
2001 |
Journal: |
Nature |
Title: |
Functional annotation of a full-length mouse cDNA collection. |
Volume: |
409 |
Issue: |
6821 |
Pages: |
685-90 |
|
•
•
•
•
•
|
Publication |
First Author: |
Zambrowicz BP |
Year: |
2003 |
Journal: |
Proc Natl Acad Sci U S A |
Title: |
Wnk1 kinase deficiency lowers blood pressure in mice: a gene-trap screen to identify potential targets for therapeutic intervention. |
Volume: |
100 |
Issue: |
24 |
Pages: |
14109-14 |
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Informatics (MGI) and National Center for Biotechnology Information (NCBI) |
Year: |
2008 |
Journal: |
Database Download |
Title: |
Mouse Gene Trap Data Load from dbGSS |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
UniProt-GOA |
Year: |
2012 |
|
Title: |
Gene Ontology annotation based on UniProtKB/Swiss-Prot keyword mapping |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
GOA curators |
Year: |
2016 |
|
Title: |
Automatic transfer of experimentally verified manual GO annotation data to orthologs using Ensembl Compara |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Okazaki Y |
Year: |
2002 |
Journal: |
Nature |
Title: |
Analysis of the mouse transcriptome based on functional annotation of 60,770 full-length cDNAs. |
Volume: |
420 |
Issue: |
6915 |
Pages: |
563-73 |
|
•
•
•
•
•
|
Publication |
First Author: |
The Gene Ontology Consortium |
Year: |
2010 |
|
Title: |
Automated transfer of experimentally-verified manual GO annotation data to mouse-human orthologs |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Diez-Roux G |
Year: |
2011 |
Journal: |
PLoS Biol |
Title: |
A high-resolution anatomical atlas of the transcriptome in the mouse embryo. |
Volume: |
9 |
Issue: |
1 |
Pages: |
e1000582 |
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Informatics Scientific Curators |
Year: |
2002 |
|
Title: |
Mouse Genome Informatics Computational Sequence to Gene Associations |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Informatics Scientific Curators |
Year: |
2010 |
Journal: |
Database Download |
Title: |
Mouse Microarray Data Integration in Mouse Genome Informatics, the Affymetrix GeneChip Mouse Genome U74 Array Platform (A, B, C v2). |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
MGI Genome Annotation Group and UniGene Staff |
Year: |
2015 |
Journal: |
Database Download |
Title: |
MGI-UniGene Interconnection Effort |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Marc Feuermann, Huaiyu Mi, Pascale Gaudet, Dustin Ebert, Anushya Muruganujan, Paul Thomas |
Year: |
2010 |
|
Title: |
Annotation inferences using phylogenetic trees |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Database and National Center for Biotechnology Information |
Year: |
2000 |
Journal: |
Database Release |
Title: |
Entrez Gene Load |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Allen Institute for Brain Science |
Year: |
2004 |
Journal: |
Allen Institute |
Title: |
Allen Brain Atlas: mouse riboprobes |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Informatics Scientific Curators |
Year: |
2009 |
Journal: |
Database Download |
Title: |
Mouse Microarray Data Integration in Mouse Genome Informatics, the Affymetrix GeneChip Mouse Gene 1.0 ST Array Platform |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Informatics (MGI) and The National Center for Biotechnology Information (NCBI) |
Year: |
2010 |
Journal: |
Database Download |
Title: |
Consensus CDS project |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Informatics Group |
Year: |
2003 |
Journal: |
Database Procedure |
Title: |
Automatic Encodes (AutoE) Reference |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Bairoch A |
Year: |
1999 |
Journal: |
Database Release |
Title: |
SWISS-PROT Annotated protein sequence database |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Informatics Scientific Curators |
Year: |
2005 |
|
Title: |
Obtaining and Loading Genome Assembly Coordinates from Ensembl Annotations |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Informatics |
Year: |
2010 |
Journal: |
Database Release |
Title: |
Protein Ontology Association Load. |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Informatics Scientific Curators |
Year: |
2005 |
|
Title: |
Obtaining and loading genome assembly coordinates from NCBI annotations |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Informatics Scientific Curators |
Year: |
2009 |
Journal: |
Database Download |
Title: |
Mouse Microarray Data Integration in Mouse Genome Informatics, the Affymetrix GeneChip Mouse Genome 430 2.0 Array Platform |
|
|
|
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
71
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
150
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
51
 |
Fragment?: |
true |
|
•
•
•
•
•
|
Publication |
First Author: |
Jarrous N |
Year: |
2001 |
Journal: |
RNA |
Title: |
Function and subnuclear distribution of Rpp21, a protein subunit of the human ribonucleoprotein ribonuclease P. |
Volume: |
7 |
Issue: |
8 |
Pages: |
1153-64 |
|
•
•
•
•
•
|
Publication |
First Author: |
Cai T |
Year: |
1999 |
Journal: |
Mol Cell Biol |
Title: |
Mutagenesis of SNM1, which encodes a protein component of the yeast RNase MRP, reveals a role for this ribonucleoprotein endoribonuclease in plasmid segregation. |
Volume: |
19 |
Issue: |
11 |
Pages: |
7857-69 |
|
•
•
•
•
•
|
Publication |
First Author: |
Houser-Scott F |
Year: |
2002 |
Journal: |
Proc Natl Acad Sci U S A |
Title: |
Interactions among the protein and RNA subunits of Saccharomyces cerevisiae nuclear RNase P. |
Volume: |
99 |
Issue: |
5 |
Pages: |
2684-9 |
|
•
•
•
•
•
|
Protein Domain |
Type: |
Family |
Description: |
This entry contains ribonuclease P (Rnp) proteins from eukaryotes and archaea. Rnp is a ubiquitous ribozyme that catalyzes a Mg2 -dependent hydrolysis to remove the 5'-leader sequence of precursor tRNA (pre-tRNA) [, ]. Archaeal and eukaryotic RNase P consist of a single RNA and archaeal RNase P has four or five proteins, while eukaryotic RNase P consists of 9 or 10 proteins. Eukaryotic and archaeal RNase P RNAs cooperatively function with protein subunits in catalysis []. Human RNase P is composed of a singular protein Pop1 and three subcomplexes, the Rpp20-Rpp25 heterodimer, Pop5-Rpp14-(Rpp30)2-Rpp40 heteropentamer, and Rpp21-Rpp29-Rpp38 heterotrimer. Although both Pop5 and Rpp14 have similar protein structure, they share a very limited sequence similarity. Moreover, the C-terminal fragments after the conserved beta sheets in Pop5 and Rpp14 exhibit distinct structural features that mediate interactions with Pop1 and Rpp40, respectively [].In the hyperthermophilic archaeon Pyrococcus horikoshii OT3, RNase P is composed of the RNase P RNA (pRNA) and five proteins (PhoPop5, PhoRpp38, PhoRpp21, PhoRpp29, and PhoRpp30) [, ].This entry includes Rpp21 from animals, Snm1/Rpr2 from yeasts and RNP4 from archaea [, ]. Snm1 is a subunit of RNase MRP (mitochondrial RNA processing), a ribonucleoprotein endoribonuclease that has roles in both mitochondrial DNA replication and nuclear 5.8S rRNA processing. Snm1 is an RNA binding protein that binds the MRP RNA specifically []. This subunit possibly binds the precursor tRNA []. |
|
•
•
•
•
•
|
Publication |
First Author: |
Mattijssen S |
Year: |
2010 |
Journal: |
Wiley Interdiscip Rev RNA |
Title: |
RNase MRP and disease. |
Volume: |
1 |
Issue: |
1 |
Pages: |
102-16 |
|
•
•
•
•
•
|
Publication |
First Author: |
Goldfarb KC |
Year: |
2017 |
Journal: |
Genes Dev |
Title: |
Targeted CRISPR disruption reveals a role for RNase MRP RNA in human preribosomal RNA processing. |
Volume: |
31 |
Issue: |
1 |
Pages: |
59-71 |
|
•
•
•
•
•
|
Publication |
First Author: |
Sidote DJ |
Year: |
2004 |
Journal: |
Biochemistry |
Title: |
Crystal structure of archaeal ribonuclease P protein aRpp29 from Archaeoglobus fulgidus. |
Volume: |
43 |
Issue: |
44 |
Pages: |
14128-38 |
|
•
•
•
•
•
|
Protein Domain |
Type: |
Family |
Description: |
Ribonuclease P (Rnp) is a ubiquitous ribozyme that catalyzes a Mg2 -dependent hydrolysis to remove the 5'-leader sequence of precursor tRNA (pre-tRNA) in all three domains of life []. In bacteria, the catalytic RNA (typically ~120kDa) is aided by a small protein cofactor (~14kDa) []. Archaeal and eukaryote RNase P consist of a single RNA and archaeal RNase P has four or five proteins, while eukaryotic RNase P consists of 9 or 10 proteins. Eukaryotic and archaeal RNase P RNAs cooperatively function with protein subunits in catalysis [].Eukaryotic nuclear RNase P shares most of its protein components with another essential RNP enzyme, nucleolar RNase MRP []. RNase MRP (mitochondrial RNA processing) is an rRNA processing enzyme that cleaves various RNAs, including ribosomal, messenger, and mitochondrial RNAs. It can cleave a specific site within precursor rRNA to generate the mature 5'-end of 5.8S rRNA []. Despite its name, the vast majority of RNase MRP is localized in the nucleolus []. RNase MRP has been shown to cleave primers for mitochondrial DNA replication and CLB2 mRNA. In yeast, RNase MRP possesses one putatively catalytic RNA and at least 9 protein subunits (Pop1, Pop3-Pop8, Rpp1, Snm1 and Rmp1) []. Human RNase MRP complex consists of 267 nucleotides and supports the interaction with and among at least seven protein components: hPop1, hPop5, Rpp20, Rpp25, Rpp30, Rpp38, and Rpp40) and three additional proteins, hPop4, Rpp21 and Rpp14, have been reported to be associated with at least a subset of RNase MRP complexes [].This entry represents the Pop5 from eukaryotes and related proteins from archaea. |
|
•
•
•
•
•
|
Protein Domain |
Type: |
Family |
Description: |
Ribonuclease P (Rnp) is a ubiquitous ribozyme that catalyzes a Mg2 -dependent hydrolysis to remove the 5'-leader sequence of precursor tRNA (pre-tRNA) in all three domains of life []. In bacteria, the catalytic RNA (typically ~120kDa) is aided by a small protein cofactor (~14kDa) []. Archaeal and eukaryote RNase P consist of a single RNA and archaeal RNase P has four or five proteins, while eukaryotic RNase P consists of 9 or 10 proteins. Eukaryotic and archaeal RNase P RNAs cooperatively function with protein subunits in catalysis [].Eukaryotic nuclear RNase P shares most of its protein components with another essential RNP enzyme, nucleolar RNase MRP []. RNase MRP (mitochondrial RNA processing) is an rRNA processing enzyme that cleaves various RNAs, including ribosomal, messenger, and mitochondrial RNAs. It can cleave a specific site within precursor rRNA to generate the mature 5'-end of 5.8S rRNA []. Despite its name, the vast majority of RNase MRP is localized in the nucleolus []. RNase MRP has been shown to cleave primers for mitochondrial DNA replication and CLB2 mRNA. In yeast, RNase MRP possesses one putatively catalytic RNA and at least 9 protein subunits (Pop1, Pop3-Pop8, Rpp1, Snm1 and Rmp1) []. Human RNase MRP complex consists of 267 nucleotides and supports the interaction with and among at least seven protein components: hPop1, hPop5, Rpp20, Rpp25, Rpp30, Rpp38, and Rpp40) and three additional proteins, hPop4, Rpp21 and Rpp14, have been reported to be associated with at least a subset of RNase MRP complexes [].This entry represents the p29 subunit (also known as Rpp29 or Pop4) of the related ribonucleoproteins ribonuclease (RNase) P and RNase MRP from eukaryotes []. Rpp29 has a conserved C-terminal domain with an Sm-like fold []. Rpp29 () catalyses the endonucleolytic cleavage of RNA, removing 5'-extranucleotides from tRNA precursor. It interacts with the Rpp25 and Pop5 subunits. |
|
•
•
•
•
•
|
Protein Domain |
Type: |
Family |
Description: |
Ribonuclease P (Rnp) is a ubiquitous ribozyme that catalyzes a Mg2 -dependent hydrolysis to remove the 5'-leader sequence of precursor tRNA (pre-tRNA) in all three domains of life []. In bacteria, the catalytic RNA (typically ~120kDa) is aided by a small protein cofactor (~14kDa) []. Archaeal and eukaryote RNase P consist of a single RNA and archaeal RNase P has four or five proteins, while eukaryotic RNase P consists of 9 or 10 proteins. Eukaryotic and archaeal RNase P RNAs cooperatively function with protein subunits in catalysis [].Eukaryotic nuclear RNase P shares most of its protein components with another essential RNP enzyme, nucleolar RNase MRP []. RNase MRP (mitochondrial RNA processing) is an rRNA processing enzyme that cleaves various RNAs, including ribosomal, messenger, and mitochondrial RNAs. It can cleave a specific site within precursor rRNA to generate the mature 5'-end of 5.8S rRNA []. Despite its name, the vast majority of RNase MRP is localized in the nucleolus []. RNase MRP has been shown to cleave primers for mitochondrial DNA replication and CLB2 mRNA. In yeast, RNase MRP possesses one putatively catalytic RNA and at least 9 protein subunits (Pop1, Pop3-Pop8, Rpp1, Snm1 and Rmp1) []. Human RNase MRP complex consists of 267 nucleotides and supports the interaction with and among at least seven protein components: hPop1, hPop5, Rpp20, Rpp25, Rpp30, Rpp38, and Rpp40) and three additional proteins, hPop4, Rpp21 and Rpp14, have been reported to be associated with at least a subset of RNase MRP complexes [].This entry includes animal Rpp38, which is a component of the Rnp and the MRP ribonuclease complexes []. |
|
•
•
•
•
•
|
Publication |
First Author: |
Walker SC |
Year: |
2005 |
Journal: |
Biochem Soc Trans |
Title: |
Probing the structure of Saccharomyces cerevisiae RNase MRP. |
Volume: |
33 |
Issue: |
Pt 3 |
Pages: |
479-81 |
|
•
•
•
•
•
|
Publication |
First Author: |
Marvin MC |
Year: |
2011 |
Journal: |
RNA |
Title: |
Accumulation of noncoding RNA due to an RNase P defect in Saccharomyces cerevisiae. |
Volume: |
17 |
Issue: |
8 |
Pages: |
1441-50 |
|
•
•
•
•
•
|
Publication |
First Author: |
Esakova O |
Year: |
2010 |
Journal: |
RNA |
Title: |
Of proteins and RNA: the RNase P/MRP family. |
Volume: |
16 |
Issue: |
9 |
Pages: |
1725-47 |
|
•
•
•
•
•
|
Protein Domain |
Type: |
Family |
Description: |
Ribonuclease P (Rnp) is a ubiquitous ribozyme that catalyzes a Mg2 -dependent hydrolysis to remove the 5'-leader sequence of precursor tRNA (pre-tRNA) in all three domains of life []. In bacteria, the catalytic RNA (typically ~120kDa) is aided by a small protein cofactor (~14kDa) []. Archaeal and eukaryote RNase P consist of a single RNA and archaeal RNase P has four or five proteins, while eukaryotic RNase P consists of 9 or 10 proteins. Eukaryotic and archaeal RNase P RNAs cooperatively function with protein subunits in catalysis [].Eukaryotic nuclear RNase P shares most of its protein components with another essential RNP enzyme, nucleolar RNase MRP []. RNase MRP (mitochondrial RNA processing) is an rRNA processing enzyme that cleaves various RNAs, including ribosomal, messenger, and mitochondrial RNAs. It can cleave a specific site within precursor rRNA to generate the mature 5'-end of 5.8S rRNA []. Despite its name, the vast majority of RNase MRP is localized in the nucleolus []. RNase MRP has been shown to cleave primers for mitochondrial DNA replication and CLB2 mRNA. In yeast, RNase MRP possesses one putatively catalytic RNA and at least 9 protein subunits (Pop1, Pop3-Pop8, Rpp1, Snm1 and Rmp1) []. Human RNase MRP complex consists of 267 nucleotides and supports the interaction with and among at least seven protein components: hPop1, hPop5, Rpp20, Rpp25, Rpp30, Rpp38, and Rpp40) and three additional proteins, hPop4, Rpp21 and Rpp14, have been reported to be associated with at least a subset of RNase MRP complexes [].This entry includes p29 subunit (also known as Rpp29 or Pop4) of the Ribonuclease P complex []. Its homologues from eukaryotes are also a subunit of the RNase MRP complex. The structure of the RNase P subunit, Rpp29, from Methanobacterium thermoautotrophicum has been determined. Mth Rpp29 is a member of the oligonucleotide/oligosaccharide binding fold family. It contains a structured β-barrel core and unstructured N- and C-terminal extensions bearing several highly conserved amino acid residues that could be involved in RNA contacts in the protein-RNA complex []. Rpp29 () catalyses the endonucleolytic cleavage of RNA, removing 5'-extranucleotides from tRNA precursor. It interacts with the Rpp25 and Pop5 subunits. |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
221
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Publication |
First Author: |
van Eenennaam H |
Year: |
1999 |
Journal: |
Nucleic Acids Res |
Title: |
hPop4: a new protein subunit of the human RNase MRP and RNase P ribonucleoprotein complexes. |
Volume: |
27 |
Issue: |
12 |
Pages: |
2465-72 |
|
•
•
•
•
•
|
Publication |
First Author: |
Boomershine WP |
Year: |
2003 |
Journal: |
Proc Natl Acad Sci U S A |
Title: |
Structure of Mth11/Mth Rpp29, an essential protein subunit of archaeal and eukaryotic RNase P. |
Volume: |
100 |
Issue: |
26 |
Pages: |
15398-403 |
|
•
•
•
•
•
|
Publication |
First Author: |
Gopalan V |
Year: |
2018 |
Journal: |
RNA |
Title: |
Chance and necessity in the evolution of RNase P. |
Volume: |
24 |
Issue: |
1 |
Pages: |
1-5 |
|
•
•
•
•
•
|
Publication |
First Author: |
Lan P |
Year: |
2018 |
Journal: |
Science |
Title: |
Structural insight into precursor tRNA processing by yeast ribonuclease P. |
Volume: |
362 |
Issue: |
6415 |
|
|
•
•
•
•
•
|
Publication |
First Author: |
Bussey H |
Year: |
1995 |
Journal: |
Proc Natl Acad Sci U S A |
Title: |
The nucleotide sequence of chromosome I from Saccharomyces cerevisiae. |
Volume: |
92 |
Issue: |
9 |
Pages: |
3809-13 |
|
•
•
•
•
•
|
Publication |
First Author: |
Jarrous N |
Year: |
1999 |
Journal: |
RNA |
Title: |
Rpp14 and Rpp29, two protein subunits of human ribonuclease P. |
Volume: |
5 |
Issue: |
2 |
Pages: |
153-7 |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
169
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
280
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
280
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
266
 |
Fragment?: |
true |
|
•
•
•
•
•
|
Publication |
First Author: |
Terada A |
Year: |
2006 |
Journal: |
J Biochem |
Title: |
Characterization of the archaeal ribonuclease P proteins from Pyrococcus horikoshii OT3. |
Volume: |
140 |
Issue: |
2 |
Pages: |
293-8 |
|
•
•
•
•
•
|
Publication |
First Author: |
Kimura M |
Year: |
2017 |
Journal: |
Biosci Biotechnol Biochem |
Title: |
Structural basis for activation of an archaeal ribonuclease P RNA by protein cofactors. |
Volume: |
81 |
Issue: |
9 |
Pages: |
1670-1680 |
|
•
•
•
•
•
|
Publication |
First Author: |
Church DM |
Year: |
2009 |
Journal: |
PLoS Biol |
Title: |
Lineage-specific biology revealed by a finished genome assembly of the mouse. |
Volume: |
7 |
Issue: |
5 |
Pages: |
e1000112 |
|
•
•
•
•
•
|