Type |
Details |
Score |
Gene |
Type: |
gene |
Organism: |
human |
|
•
•
•
•
•
|
Gene |
Type: |
gene |
Organism: |
frog, western clawed |
|
•
•
•
•
•
|
Gene |
|
•
•
•
•
•
|
Gene |
Type: |
gene |
Organism: |
chimpanzee |
|
•
•
•
•
•
|
Gene |
Type: |
gene |
Organism: |
dog, domestic |
|
•
•
•
•
•
|
Gene |
Type: |
gene |
Organism: |
cattle |
|
•
•
•
•
•
|
Gene |
Type: |
gene |
Organism: |
chicken |
|
•
•
•
•
•
|
Gene |
Type: |
gene |
Organism: |
zebrafish |
|
•
•
•
•
•
|
Gene |
Type: |
gene |
Organism: |
macaque, rhesus |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
144
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
144
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
Mus caroli |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
Mus pahari |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
Mus spretus |
|
•
•
•
•
•
|
GXD Expression |
Probe: |
MGI:5811066 |
Assay Type: |
RNA in situ |
Annotation Date: |
2017-02-09 |
Strength: |
Present |
Sex: |
Not Specified |
Emaps: |
EMAPS:1640617 |
Pattern: |
Regionally restricted |
Stage: |
TS17 |
Assay Id: |
MGI:5823727 |
Age: |
embryonic day 10.5 |
Image: |
Srp19_a8_E10.5b_RF_JL |
Note: |
Staining is observed in the distal limb bud. |
Specimen Label: |
Srp19_a8_E10.5b_RF_JL |
Detected: |
true |
Specimen Num: |
1 |
|
•
•
•
•
•
|
GXD Expression |
Probe: |
MGI:5811066 |
Assay Type: |
RNA in situ |
Annotation Date: |
2017-02-09 |
Strength: |
Present |
Sex: |
Not Specified |
Emaps: |
EMAPS:1640619 |
Pattern: |
Regionally restricted |
Stage: |
TS19 |
Assay Id: |
MGI:5823727 |
Age: |
embryonic day 11.5 |
Image: |
Srp19_a8_E11.5a_RF_JL |
Note: |
Domains of staining are similar to those seen at E10.5. |
Specimen Label: |
Srp19_a8_E11.5a_RF_JL |
Detected: |
true |
Specimen Num: |
2 |
|
•
•
•
•
•
|
GXD Expression |
Probe: |
MGI:5811066 |
Assay Type: |
RNA in situ |
Annotation Date: |
2017-02-09 |
Strength: |
Present |
Sex: |
Not Specified |
Emaps: |
EMAPS:1640619 |
Pattern: |
Regionally restricted |
Stage: |
TS19 |
Assay Id: |
MGI:5823727 |
Age: |
embryonic day 11.5 |
Image: |
Srp19_a8_E11.5b_RF_JL |
Note: |
Domains of staining are similar to those seen at E10.5. |
Specimen Label: |
Srp19_a8_E11.5b_RF_JL |
Detected: |
true |
Specimen Num: |
3 |
|
•
•
•
•
•
|
GXD Expression |
Probe: |
MGI:5811066 |
Assay Type: |
RNA in situ |
Annotation Date: |
2017-02-09 |
Strength: |
Present |
Sex: |
Not Specified |
Emaps: |
EMAPS:1640617 |
Pattern: |
Not Specified |
Stage: |
TS17 |
Assay Id: |
MGI:5823727 |
Age: |
embryonic day 10.5 |
Image: |
Srp19_a8_E10.5a_JL |
|
Specimen Label: |
Srp19_a8_E10.5a_JL |
Detected: |
true |
Specimen Num: |
4 |
|
•
•
•
•
•
|
GXD Expression |
Probe: |
MGI:5811066 |
Assay Type: |
RNA in situ |
Annotation Date: |
2017-02-09 |
Strength: |
Present |
Sex: |
Not Specified |
Emaps: |
EMAPS:1640617 |
Pattern: |
Not Specified |
Stage: |
TS17 |
Assay Id: |
MGI:5823727 |
Age: |
embryonic day 10.5 |
Image: |
Srp19_a8_E10.5b_JL |
|
Specimen Label: |
Srp19_a8_E10.5b_JL |
Detected: |
true |
Specimen Num: |
5 |
|
•
•
•
•
•
|
GXD Expression |
Probe: |
MGI:5811066 |
Assay Type: |
RNA in situ |
Annotation Date: |
2017-02-09 |
Strength: |
Present |
Sex: |
Not Specified |
Emaps: |
EMAPS:1640619 |
Pattern: |
Not Specified |
Stage: |
TS19 |
Assay Id: |
MGI:5823727 |
Age: |
embryonic day 11.5 |
Image: |
Srp19_a8_E11.5a_JL |
|
Specimen Label: |
Srp19_a8_E11.5a_JL |
Detected: |
true |
Specimen Num: |
6 |
|
•
•
•
•
•
|
GXD Expression |
Probe: |
MGI:5811066 |
Assay Type: |
RNA in situ |
Annotation Date: |
2017-02-09 |
Strength: |
Present |
Sex: |
Not Specified |
Emaps: |
EMAPS:1640619 |
Pattern: |
Not Specified |
Stage: |
TS19 |
Assay Id: |
MGI:5823727 |
Age: |
embryonic day 11.5 |
Image: |
Srp19_a8_E11.5b_JL |
|
Specimen Label: |
Srp19_a8_E11.5b_JL |
Detected: |
true |
Specimen Num: |
7 |
|
•
•
•
•
•
|
Publication |
First Author: |
Kawai J |
Year: |
2001 |
Journal: |
Nature |
Title: |
Functional annotation of a full-length mouse cDNA collection. |
Volume: |
409 |
Issue: |
6821 |
Pages: |
685-90 |
|
•
•
•
•
•
|
Publication |
First Author: |
Lewandowski JP |
Year: |
2015 |
Journal: |
Dev Biol |
Title: |
Spatiotemporal regulation of GLI target genes in the mammalian limb bud. |
Volume: |
406 |
Issue: |
1 |
Pages: |
92-103 |
|
•
•
•
•
•
|
Publication |
First Author: |
Okazaki Y |
Year: |
2002 |
Journal: |
Nature |
Title: |
Analysis of the mouse transcriptome based on functional annotation of 60,770 full-length cDNAs. |
Volume: |
420 |
Issue: |
6915 |
Pages: |
563-73 |
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Informatics Scientific Curators |
Year: |
2001 |
|
Title: |
Gene Ontology Annotation by the MGI Curatorial Staff |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
MGI and IMPC |
Year: |
2018 |
Journal: |
Database Release |
Title: |
MGI Load of Endonuclease-Mediated Alleles (CRISPR) from the International Mouse Phenotyping Consortium (IMPC) |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Wellcome Trust Sanger Institute |
Year: |
2009 |
Journal: |
MGI Direct Data Submission |
Title: |
Alleles produced for the KOMP project by the Wellcome Trust Sanger Institute |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Hansen GM |
Year: |
2008 |
Journal: |
Genome Res |
Title: |
Large-scale gene trapping in C57BL/6N mouse embryonic stem cells. |
Volume: |
18 |
Issue: |
10 |
Pages: |
1670-9 |
|
•
•
•
•
•
|
Publication |
First Author: |
UniProt-GOA |
Year: |
2012 |
|
Title: |
Gene Ontology annotation based on UniProtKB/Swiss-Prot Subcellular Location vocabulary mapping, accompanied by conservative changes to GO terms applied by UniProt |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
DDB, FB, MGI, GOA, ZFIN curators |
Year: |
2001 |
|
Title: |
Gene Ontology annotation through association of InterPro records with GO terms |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Informatics Scientific Curators |
Year: |
2002 |
|
Title: |
Chromosome assignment of mouse genes using the Mouse Genome Sequencing Consortium (MGSC) assembly and the ENSEMBL Database |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Carninci P |
Year: |
2005 |
Journal: |
Science |
Title: |
The transcriptional landscape of the mammalian genome. |
Volume: |
309 |
Issue: |
5740 |
Pages: |
1559-63 |
|
•
•
•
•
•
|
Publication |
First Author: |
Zambrowicz BP |
Year: |
2003 |
Journal: |
Proc Natl Acad Sci U S A |
Title: |
Wnk1 kinase deficiency lowers blood pressure in mice: a gene-trap screen to identify potential targets for therapeutic intervention. |
Volume: |
100 |
Issue: |
24 |
Pages: |
14109-14 |
|
•
•
•
•
•
|
Publication |
First Author: |
Skarnes WC |
Year: |
2011 |
Journal: |
Nature |
Title: |
A conditional knockout resource for the genome-wide study of mouse gene function. |
Volume: |
474 |
Issue: |
7351 |
Pages: |
337-42 |
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Informatics (MGI) and National Center for Biotechnology Information (NCBI) |
Year: |
2008 |
Journal: |
Database Download |
Title: |
Mouse Gene Trap Data Load from dbGSS |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
UniProt-GOA |
Year: |
2012 |
|
Title: |
Gene Ontology annotation based on UniProtKB/Swiss-Prot keyword mapping |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
The Gene Ontology Consortium |
Year: |
2010 |
|
Title: |
Automated transfer of experimentally-verified manual GO annotation data to mouse-human orthologs |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Informatics Scientific Curators |
Year: |
2002 |
|
Title: |
Mouse Genome Informatics Computational Sequence to Gene Associations |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Informatics Scientific Curators |
Year: |
2010 |
Journal: |
Database Download |
Title: |
Mouse Microarray Data Integration in Mouse Genome Informatics, the Affymetrix GeneChip Mouse Genome U74 Array Platform (A, B, C v2). |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
MGI Genome Annotation Group and UniGene Staff |
Year: |
2015 |
Journal: |
Database Download |
Title: |
MGI-UniGene Interconnection Effort |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Marc Feuermann, Huaiyu Mi, Pascale Gaudet, Dustin Ebert, Anushya Muruganujan, Paul Thomas |
Year: |
2010 |
|
Title: |
Annotation inferences using phylogenetic trees |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Database and National Center for Biotechnology Information |
Year: |
2000 |
Journal: |
Database Release |
Title: |
Entrez Gene Load |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Allen Institute for Brain Science |
Year: |
2004 |
Journal: |
Allen Institute |
Title: |
Allen Brain Atlas: mouse riboprobes |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Informatics Scientific Curators |
Year: |
2009 |
Journal: |
Database Download |
Title: |
Mouse Microarray Data Integration in Mouse Genome Informatics, the Affymetrix GeneChip Mouse Gene 1.0 ST Array Platform |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Informatics (MGI) and The National Center for Biotechnology Information (NCBI) |
Year: |
2010 |
Journal: |
Database Download |
Title: |
Consensus CDS project |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Informatics Group |
Year: |
2003 |
Journal: |
Database Procedure |
Title: |
Automatic Encodes (AutoE) Reference |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Bairoch A |
Year: |
1999 |
Journal: |
Database Release |
Title: |
SWISS-PROT Annotated protein sequence database |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Informatics Scientific Curators |
Year: |
2005 |
|
Title: |
Obtaining and Loading Genome Assembly Coordinates from Ensembl Annotations |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Informatics |
Year: |
2010 |
Journal: |
Database Release |
Title: |
Protein Ontology Association Load. |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Informatics Scientific Curators |
Year: |
2005 |
|
Title: |
Obtaining and loading genome assembly coordinates from NCBI annotations |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Informatics Scientific Curators |
Year: |
2009 |
Journal: |
Database Download |
Title: |
Mouse Microarray Data Integration in Mouse Genome Informatics, the Affymetrix GeneChip Mouse Genome 430 2.0 Array Platform |
|
|
|
|
•
•
•
•
•
|
Protein Domain |
Type: |
Family |
Description: |
The signal recognition particle (SRP) is a multimeric protein, which along with its conjugate receptor (SR), is involved in targeting secretory proteins to the rough endoplasmic reticulum (RER) membrane in eukaryotes, or to the plasma membrane in prokaryotes [, ]. SRP recognises the signal sequence of the nascent polypeptide on the ribosome. In eukaryotes this retards its elongation until SRP docks the ribosome-polypeptide complex to the RER membrane via the SR receptor []. Eukaryotic SRP consists of six polypeptides (SRP9, SRP14, SRP19, SRP54, SRP68 and SRP72) and a single 300 nucleotide 7S RNA molecule. The RNA component catalyses the interactionof SRP with its SR receptor []. In higher eukaryotes, the SRP complex consists of the Alu domain and the S domain linked by the SRP RNA. The Alu domain consists of a heterodimer of SRP9 and SRP14 bound to the 5' and 3' terminal sequences of SRP RNA. This domain is necessary for retarding the elongation of the nascent polypeptide chain, which gives SRP time to dock the ribosome-polypeptide complex to the RER membrane. In archaea, the SRP complex contains 7S RNA like its eukaryotic counterpart, yet only includes two of the six protein subunits found in the eukarytic complex: SRP19 and SRP54 [].This entry represents the SRP19 subunit. The SRP19 protein is unstructured but forms a compact core domain and two extended RNA-binding loops upon binding the signal recognition particle (SRP) RNA []. |
|
•
•
•
•
•
|
Protein Domain |
Type: |
Family |
Description: |
The signal recognition particle (SRP) is a multimeric protein, which along with its conjugate receptor (SR), is involved in targeting secretory proteins to the rough endoplasmic reticulum (RER) membrane in eukaryotes, or to the plasma membrane in prokaryotes [, ]. SRP recognises the signal sequence of the nascent polypeptide on the ribosome. In eukaryotes this retards its elongation until SRP docks the ribosome-polypeptide complex to the RER membrane via the SR receptor []. Eukaryotic SRP consists of six polypeptides (SRP9, SRP14, SRP19, SRP54, SRP68 and SRP72) and a single 300 nucleotide 7S RNA molecule. The RNA component catalyses the interaction of SRP with its SR receptor []. In higher eukaryotes, the SRP complex consists of the Alu domain and the S domain linked by the SRP RNA. The Alu domain consists of a heterodimer of SRP9 and SRP14 bound to the 5' and 3' terminal sequences of SRP RNA. This domain is necessary for retarding the elongation of the nascent polypeptide chain, which gives SRP time to dock the ribosome-polypeptide complex to the RER membrane. In archaea, the SRP complex contains 7S RNA like its eukaryotic counterpart, yet only includes two of the six protein subunits found in the eukarytic complex: SRP19 and SRP54 [].This entry represents the SRP19 subunit in Archaea and Fungi. In Fungi it is known as SEC65 subunit. |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
135
 |
Fragment?: |
true |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
113
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
40
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
78
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
120
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Publication |
First Author: |
Maity TS |
Year: |
2007 |
Journal: |
J Mol Biol |
Title: |
A threefold RNA-protein interface in the signal recognition particle gates native complex assembly. |
Volume: |
369 |
Issue: |
2 |
Pages: |
512-24 |
|
•
•
•
•
•
|
Publication |
First Author: |
Römisch K |
Year: |
2006 |
Journal: |
Arthritis Res Ther |
Title: |
Human autoantibodies against the 54 kDa protein of the signal recognition particle block function at multiple stages. |
Volume: |
8 |
Issue: |
2 |
Pages: |
R39 |
|
•
•
•
•
•
|
Publication |
First Author: |
Reyes CL |
Year: |
2007 |
Journal: |
PLoS One |
Title: |
X-ray structures of the signal recognition particle receptor reveal targeting cycle intermediates. |
Volume: |
2 |
Issue: |
7 |
Pages: |
e607 |
|
•
•
•
•
•
|
Publication |
First Author: |
Bradshaw N |
Year: |
2007 |
Journal: |
Mol Biol Cell |
Title: |
The signal recognition particle (SRP) RNA links conformational changes in the SRP to protein targeting. |
Volume: |
18 |
Issue: |
7 |
Pages: |
2728-34 |
|
•
•
•
•
•
|
Publication |
First Author: |
Tozik I |
Year: |
2002 |
Journal: |
Nucleic Acids Res |
Title: |
Reconstitution of the signal recognition particle of the halophilic archaeon Haloferax volcanii. |
Volume: |
30 |
Issue: |
19 |
Pages: |
4166-75 |
|
•
•
•
•
•
|
Publication |
First Author: |
Koch HG |
Year: |
2003 |
Journal: |
Rev Physiol Biochem Pharmacol |
Title: |
Signal recognition particle-dependent protein targeting, universal to all kingdoms of life. |
Volume: |
146 |
|
Pages: |
55-94 |
|
•
•
•
•
•
|
Protein Domain |
Type: |
Homologous_superfamily |
Description: |
The signal recognition particle (SRP) is a multimeric protein, which along with its conjugate receptor (SR), is involved in targeting secretory proteins to the rough endoplasmic reticulum (RER) membrane in eukaryotes, or to the plasma membrane in prokaryotes [, ]. SRP recognises the signal sequence of the nascent polypeptide on the ribosome. In eukaryotes this retards its elongation until SRP docks the ribosome-polypeptide complex to the RER membrane via the SR receptor []. Eukaryotic SRP consists of six polypeptides (SRP9, SRP14, SRP19, SRP54, SRP68 and SRP72) and a single 300 nucleotide 7S RNA molecule. The RNA component catalyses the interaction of SRP with its SR receptor []. In higher eukaryotes, the SRP complex consists of the Alu domain and the S domain linked by the SRP RNA. The Alu domain consists of a heterodimer of SRP9 and SRP14 bound to the 5' and 3' terminal sequences of SRP RNA.This domain is necessary for retarding the elongation of the nascent polypeptide chain, which gives SRP time to dock the ribosome-polypeptide complex to the RER membrane. In archaea, the SRP complex contains 7S RNA like its eukaryotic counterpart, yet only includes two of the six protein subunits found in the eukarytic complex: SRP19 and SRP54 [].This entry represents the SRP19 subunit. The SRP19 protein is unstructured but forms a compact core domain and two extended RNA-binding loops upon binding the signal recognition particle (SRP) RNA []. |
|
•
•
•
•
•
|
SO Term |
|
•
•
•
•
•
|
Publication |
First Author: |
Iakhiaeva E |
Year: |
2005 |
Journal: |
J Mol Biol |
Title: |
Identification of an RNA-binding domain in human SRP72. |
Volume: |
345 |
Issue: |
4 |
Pages: |
659-66 |
|
•
•
•
•
•
|
Protein Domain |
Type: |
Domain |
Description: |
This domain can be found in human SRP9 protein and its homologues, such as the Srp21 protein from budding yeasts []. These proteins are part of the signal recognition particle (SRP) [].The signal recognition particle (SRP) is a multimeric protein, which along with its conjugate receptor (SR), is involved in targeting secretory proteins to the rough endoplasmic reticulum (RER) membrane in eukaryotes, or to the plasma membrane in prokaryotes [, ]. SRP recognises the signal sequence of the nascent polypeptide on the ribosome. In eukaryotes this retards its elongation until SRP docks the ribosome-polypeptide complex to the RER membrane via the SR receptor []. Eukaryotic SRP consists of six polypeptides (SRP9, SRP14, SRP19, SRP54, SRP68 and SRP72) and a single 300 nucleotide 7S RNA molecule. The RNA component catalyses the interaction of SRP with its SR receptor []. In higher eukaryotes, the SRP complex consists of the Alu domain and the S domain linked by the SRP RNA. The Alu domain consists of a heterodimer of SRP9 and SRP14 bound to the 5' and 3' terminal sequences of SRP RNA. This domain is necessary for retarding the elongation of the nascent polypeptide chain, which gives SRP time to dock the ribosome-polypeptide complex to the RER membrane. In archaea, the SRP complex contains 7S RNA like its eukaryotic counterpart, yet only includes two of the six protein subunits found in the eukarytic complex: SRP19 and SRP54 []. |
|
•
•
•
•
•
|
Protein Domain |
Type: |
Family |
Description: |
This entry represents proteins contain an SRP9 domain, such as human signal recognition particle 9kDa protein (SRP9), a component of the signal recognition particle (SRP) [],The signal recognition particle (SRP) is a multimeric protein, which along with its conjugate receptor (SR), is involved in targeting secretory proteins to the rough endoplasmic reticulum (RER) membrane in eukaryotes, or to the plasma membrane in prokaryotes [, ]. SRP recognises the signal sequence of the nascent polypeptide on the ribosome. In eukaryotes this retards its elongation until SRP docks the ribosome-polypeptide complex to the RER membrane via the SR receptor []. Eukaryotic SRP consists of six polypeptides (SRP9, SRP14, SRP19, SRP54, SRP68 and SRP72) and a single 300 nucleotide 7S RNA molecule. The RNA component catalyses the interaction of SRP with its SR receptor []. In higher eukaryotes, the SRP complex consists of the Alu domain and the S domain linked by the SRP RNA. The Alu domain consists of a heterodimer of SRP9 and SRP14 bound to the 5' and 3' terminal sequences of SRP RNA. This domain is necessary for retarding the elongation of the nascent polypeptide chain, which gives SRP time to dock the ribosome-polypeptide complex to the RER membrane. In archaea, the SRP complex contains 7S RNA like its eukaryotic counterpart, yet only includes two of the six protein subunits found in the eukarytic complex: SRP19 and SRP54 []. |
|
•
•
•
•
•
|
Protein Domain |
Type: |
Domain |
Description: |
The signal recognition particle (SRP) is a multimeric protein, which along with its conjugate receptor (SR), is involved in targeting secretory proteins to the rough endoplasmic reticulum (RER) membrane in eukaryotes, or to the plasma membrane in prokaryotes [, ]. SRP recognises the signal sequence of the nascent polypeptide on the ribosome. In eukaryotes this retards its elongation until SRP docks the ribosome-polypeptide complex to the RER membrane via the SR receptor []. Eukaryotic SRP consists of six polypeptides (SRP9, SRP14, SRP19, SRP54, SRP68 and SRP72) and a single 300 nucleotide 7S RNA molecule. The RNA component catalyses the interaction of SRP with its SR receptor []. In higher eukaryotes, the SRP complex consists of the Alu domain and the S domain linked by the SRP RNA. The Alu domain consists of a heterodimer of SRP9 and SRP14 bound to the 5' and 3' terminal sequences of SRP RNA. This domain is necessary for retarding the elongation of the nascent polypeptide chain, which gives SRP time to dock the ribosome-polypeptide complex to the RER membrane. In archaea, the SRP complex contains 7S RNA like its eukaryotic counterpart, yet only includes two of the six protein subunits found in the eukarytic complex: SRP19 and SRP54 [].This entry represents the RNA binding domain of the SRP72 subunit. This domain is responsible for the binding of SRP72 to the 7S SRP RNA []. |
|
•
•
•
•
•
|
Publication |
First Author: |
Hsu K |
Year: |
1995 |
Journal: |
J Biol Chem |
Title: |
Human signal recognition particle (SRP) Alu-associated protein also binds Alu interspersed repeat sequence RNAs. Characterization of human SRP9. |
Volume: |
270 |
Issue: |
17 |
Pages: |
10179-86 |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
110
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
97
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
86
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
86
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
144
 |
Fragment?: |
true |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
86
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
78
 |
Fragment?: |
true |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
197
 |
Fragment?: |
true |
|
•
•
•
•
•
|
Publication |
First Author: |
Jagath JR |
Year: |
1998 |
Journal: |
Biochemistry |
Title: |
Interaction of guanine nucleotides with the signal recognition particle from Escherichia coli. |
Volume: |
37 |
Issue: |
44 |
Pages: |
15408-13 |
|
•
•
•
•
•
|
Publication |
First Author: |
Jagath JR |
Year: |
2000 |
Journal: |
J Mol Biol |
Title: |
Conformational changes in the bacterial SRP receptor FtsY upon binding of guanine nucleotides and SRP. |
Volume: |
295 |
Issue: |
4 |
Pages: |
745-53 |
|
•
•
•
•
•
|
Publication |
First Author: |
Brown JD |
Year: |
1994 |
Journal: |
EMBO J |
Title: |
Subunits of the Saccharomyces cerevisiae signal recognition particle required for its functional expression. |
Volume: |
13 |
Issue: |
18 |
Pages: |
4390-400 |
|
•
•
•
•
•
|
Protein Domain |
Type: |
Family |
Description: |
This entry represents the SRP54 subunit of the signal recognition particle protein translocation system.The signal recognition particle (SRP) is a multimeric protein, which along with its conjugate receptor (SR), is involved in targeting secretory proteins to the rough endoplasmic reticulum (RER) membrane in eukaryotes, or to the plasma membrane in prokaryotes [, ]. SRP recognises the signal sequence of the nascent polypeptide on the ribosome. In eukaryotes this retards its elongation until SRP docks the ribosome-polypeptide complex to the RER membrane via the SR receptor []. Eukaryotic SRP consists of six polypeptides (SRP9, SRP14, SRP19, SRP54, SRP68 and SRP72) and a single 300 nucleotide 7S RNA molecule. The RNA component catalyses the interaction of SRP with its SR receptor []. In higher eukaryotes, the SRP complex consists of the Alu domain and the S domain linked by the SRP RNA. The Alu domain consists of a heterodimer of SRP9 and SRP14 bound to the 5' and 3' terminal sequences of SRP RNA. This domain is necessary for retarding the elongation of the nascent polypeptide chain, which gives SRP time to dock the ribosome-polypeptide complex to the RER membrane. In archaea, the SRP complex contains 7S RNA like its eukaryotic counterpart, yet only includes two of the six protein subunits found in the eukarytic complex: SRP19 and SRP54 [].The bacterial homologues of the SRP54 protein and SRP RNA are Ffh and 4.5S RNA. They comprise a minimal bacterial SRP that can target ribosome-nascent chain complexes to the plasma membrane via interaction with FtsY, the bacterialhomologue of the SRP receptor [, ]. |
|
•
•
•
•
•
|