Type |
Details |
Score |
Gene |
Type: |
gene |
Organism: |
human |
|
•
•
•
•
•
|
Gene |
Type: |
gene |
Organism: |
chicken |
|
•
•
•
•
•
|
Gene |
|
•
•
•
•
•
|
Gene |
Type: |
gene |
Organism: |
chimpanzee |
|
•
•
•
•
•
|
Gene |
Type: |
gene |
Organism: |
zebrafish |
|
•
•
•
•
•
|
Gene |
Type: |
gene |
Organism: |
dog, domestic |
|
•
•
•
•
•
|
Gene |
Type: |
gene |
Organism: |
cattle |
|
•
•
•
•
•
|
Gene |
Type: |
gene |
Organism: |
macaque, rhesus |
|
•
•
•
•
•
|
Gene |
Type: |
gene |
Organism: |
frog, western clawed |
|
•
•
•
•
•
|
Protein Domain |
Type: |
Family |
Description: |
The Endosomal Sorting Complex Required for Transport (ESCRT) complexes form the machinery driving protein sorting from endosomes to lysosomes. ESCRT complexes are central to receptor down-regulation, lysosome biogenesis, and budding of HIV. Yeast ESCRT-I consists of three protein subunits, Vps23, Vps28, and Vps37. In humans, ESCRT-I comprises TSG101, VPS28, and one of four potential human VPS37 homologues. The main role of ESCRT-I is to recognise ubiquitinated cargo via the UEV domain of the VPS23/TSG101 subunit. The assembly of the ESCRT-I complex is directed by the C-terminal steadiness box (SB) of VPS23, the N-terminal half of VPS28, and the C-terminal half of VPS37. The structure is primarily composed of three long, parallel helical hairpins, each corresponding to a different subunit. The additional domains and motifs extending beyond the core serve as gripping tools for ESCRT-I critical functions [, ]. |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
221
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
183
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
183
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Publication |
First Author: |
Kostelansky MS |
Year: |
2006 |
Journal: |
Cell |
Title: |
Structural and functional organization of the ESCRT-I trafficking complex. |
Volume: |
125 |
Issue: |
1 |
Pages: |
113-26 |
|
•
•
•
•
•
|
Publication |
First Author: |
Teo H |
Year: |
2006 |
Journal: |
Cell |
Title: |
ESCRT-I core and ESCRT-II GLUE domain structures reveal role for GLUE in linking to ESCRT-I and membranes. |
Volume: |
125 |
Issue: |
1 |
Pages: |
99-111 |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Publication |
First Author: |
Strausberg R |
Year: |
2001 |
Journal: |
GenBank Submission |
Title: |
Mus musculus, RIKEN cDNA 1110014J03 gene, clone MGC: 19216 IMAGE: 4239189, mRNA, complete cds |
|
|
Pages: |
BC013535 |
|
•
•
•
•
•
|
Publication |
First Author: |
Cho SG |
Year: |
2003 |
Journal: |
J Cell Biol |
Title: |
Identification of a novel antiapoptotic protein that antagonizes ASK1 and CAD activities. |
Volume: |
163 |
Issue: |
1 |
Pages: |
71-81 |
|
•
•
•
•
•
|
Publication |
First Author: |
Suzuki H |
Year: |
2001 |
Journal: |
Genome Res |
Title: |
Protein-protein interaction panel using mouse full-length cDNAs. |
Volume: |
11 |
Issue: |
10 |
Pages: |
1758-65 |
|
•
•
•
•
•
|
Publication |
First Author: |
Centre for Modeling Human Disease |
Year: |
2010 |
Journal: |
MGI Direct Data Submission |
Title: |
Alleles produced for the NorCOMM project by the Centre for Modeling Human Disease (Cmhd), Institute of Biomaterials & Biomedical Engineering, University of Toronto |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Informatics Scientific Curators |
Year: |
2001 |
|
Title: |
RIKEN Data Curation in Mouse Genome Informatics |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Informatics Scientific Curators |
Year: |
2001 |
|
Title: |
Gene Ontology Annotation by the MGI Curatorial Staff |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Informatics Scientific Curators |
Year: |
2003 |
|
Title: |
Data Curation Using Mouse Genome Assembly |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Wellcome Trust Sanger Institute |
Year: |
2010 |
Journal: |
MGI Direct Data Submission |
Title: |
Alleles produced for the EUCOMM and EUCOMMTools projects by the Wellcome Trust Sanger Institute |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Hansen GM |
Year: |
2008 |
Journal: |
Genome Res |
Title: |
Large-scale gene trapping in C57BL/6N mouse embryonic stem cells. |
Volume: |
18 |
Issue: |
10 |
Pages: |
1670-9 |
|
•
•
•
•
•
|
Publication |
First Author: |
The Gene Ontology Consortium |
Year: |
2014 |
|
Title: |
Automated transfer of experimentally-verified manual GO annotation data to mouse-rat orthologs |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
UniProt-GOA |
Year: |
2012 |
|
Title: |
Gene Ontology annotation based on UniProtKB/Swiss-Prot Subcellular Location vocabulary mapping, accompanied by conservative changes to GO terms applied by UniProt |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
DDB, FB, MGI, GOA, ZFIN curators |
Year: |
2001 |
|
Title: |
Gene Ontology annotation through association of InterPro records with GO terms |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Magdaleno S |
Year: |
2006 |
Journal: |
PLoS Biol |
Title: |
BGEM: an in situ hybridization database of gene expression in the embryonic and adult mouse nervous system. |
Volume: |
4 |
Issue: |
4 |
Pages: |
e86 |
|
•
•
•
•
•
|
Publication |
First Author: |
Kawai J |
Year: |
2001 |
Journal: |
Nature |
Title: |
Functional annotation of a full-length mouse cDNA collection. |
Volume: |
409 |
Issue: |
6821 |
Pages: |
685-90 |
|
•
•
•
•
•
|
Publication |
First Author: |
Zambrowicz BP |
Year: |
2003 |
Journal: |
Proc Natl Acad Sci U S A |
Title: |
Wnk1 kinase deficiency lowers blood pressure in mice: a gene-trap screen to identify potential targets for therapeutic intervention. |
Volume: |
100 |
Issue: |
24 |
Pages: |
14109-14 |
|
•
•
•
•
•
|
Publication |
First Author: |
GemPharmatech |
Year: |
2020 |
|
Title: |
GemPharmatech Website. |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Skarnes WC |
Year: |
2011 |
Journal: |
Nature |
Title: |
A conditional knockout resource for the genome-wide study of mouse gene function. |
Volume: |
474 |
Issue: |
7351 |
Pages: |
337-42 |
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Informatics (MGI) and National Center for Biotechnology Information (NCBI) |
Year: |
2008 |
Journal: |
Database Download |
Title: |
Mouse Gene Trap Data Load from dbGSS |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
AgBase, BHF-UCL, Parkinson's UK-UCL, dictyBase, HGNC, Roslin Institute, FlyBase and UniProtKB curators |
Year: |
2011 |
|
Title: |
Manual transfer of experimentally-verified manual GO annotation data to orthologs by curator judgment of sequence similarity |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
UniProt-GOA |
Year: |
2012 |
|
Title: |
Gene Ontology annotation based on UniProtKB/Swiss-Prot keyword mapping |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
GOA curators |
Year: |
2016 |
|
Title: |
Automatic transfer of experimentally verified manual GO annotation data to orthologs using Ensembl Compara |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
The Jackson Laboratory Mouse Radiation Hybrid Database |
Year: |
2004 |
Journal: |
Database Release |
Title: |
Mouse T31 Radiation Hybrid Data Load |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Okazaki Y |
Year: |
2002 |
Journal: |
Nature |
Title: |
Analysis of the mouse transcriptome based on functional annotation of 60,770 full-length cDNAs. |
Volume: |
420 |
Issue: |
6915 |
Pages: |
563-73 |
|
•
•
•
•
•
|
Publication |
First Author: |
The Gene Ontology Consortium |
Year: |
2010 |
|
Title: |
Automated transfer of experimentally-verified manual GO annotation data to mouse-human orthologs |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Diez-Roux G |
Year: |
2011 |
Journal: |
PLoS Biol |
Title: |
A high-resolution anatomical atlas of the transcriptome in the mouse embryo. |
Volume: |
9 |
Issue: |
1 |
Pages: |
e1000582 |
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Informatics Scientific Curators |
Year: |
2002 |
|
Title: |
Mouse Genome Informatics Computational Sequence to Gene Associations |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Informatics Scientific Curators |
Year: |
2010 |
Journal: |
Database Download |
Title: |
Mouse Microarray Data Integration in Mouse Genome Informatics, the Affymetrix GeneChip Mouse Genome U74 Array Platform (A, B, C v2). |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
MGI Genome Annotation Group and UniGene Staff |
Year: |
2015 |
Journal: |
Database Download |
Title: |
MGI-UniGene Interconnection Effort |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Marc Feuermann, Huaiyu Mi, Pascale Gaudet, Dustin Ebert, Anushya Muruganujan, Paul Thomas |
Year: |
2010 |
|
Title: |
Annotation inferences using phylogenetic trees |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Database and National Center for Biotechnology Information |
Year: |
2000 |
Journal: |
Database Release |
Title: |
Entrez Gene Load |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Allen Institute for Brain Science |
Year: |
2004 |
Journal: |
Allen Institute |
Title: |
Allen Brain Atlas: mouse riboprobes |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Informatics Scientific Curators |
Year: |
2009 |
Journal: |
Database Download |
Title: |
Mouse Microarray Data Integration in Mouse Genome Informatics, the Affymetrix GeneChip Mouse Gene 1.0 ST Array Platform |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Informatics (MGI) and The National Center for Biotechnology Information (NCBI) |
Year: |
2010 |
Journal: |
Database Download |
Title: |
Consensus CDS project |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Informatics Group |
Year: |
2003 |
Journal: |
Database Procedure |
Title: |
Automatic Encodes (AutoE) Reference |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Bairoch A |
Year: |
1999 |
Journal: |
Database Release |
Title: |
SWISS-PROT Annotated protein sequence database |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Informatics Scientific Curators |
Year: |
2005 |
|
Title: |
Obtaining and Loading Genome Assembly Coordinates from Ensembl Annotations |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Informatics |
Year: |
2010 |
Journal: |
Database Release |
Title: |
Protein Ontology Association Load. |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Informatics Scientific Curators |
Year: |
2005 |
|
Title: |
Obtaining and loading genome assembly coordinates from NCBI annotations |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Informatics Scientific Curators |
Year: |
2009 |
Journal: |
Database Download |
Title: |
Mouse Microarray Data Integration in Mouse Genome Informatics, the Affymetrix GeneChip Mouse Genome 430 2.0 Array Platform |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Bishop N |
Year: |
2001 |
Journal: |
J Biol Chem |
Title: |
TSG101/mammalian VPS23 and mammalian VPS28 interact directly and are recruited to VPS4-induced endosomes. |
Volume: |
276 |
Issue: |
15 |
Pages: |
11735-42 |
|
•
•
•
•
•
|
Publication |
First Author: |
Borlak J |
Year: |
2018 |
Journal: |
Biochim Biophys Acta Mol Basis Dis |
Title: |
Serum proteome mapping of EGF transgenic mice reveal mechanistic biomarkers of lung cancer precursor lesions with clinical significance for human adenocarcinomas. |
Volume: |
1864 |
Issue: |
10 |
Pages: |
3122-3144 |
|
•
•
•
•
•
|
Publication |
First Author: |
Singh SR |
Year: |
2021 |
Journal: |
Autophagy |
Title: |
A high-throughput screening identifies ZNF418 as a novel regulator of the ubiquitin-proteasome system and autophagy-lysosomal pathway. |
Volume: |
17 |
Issue: |
10 |
Pages: |
3124-3139 |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
133
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
74
 |
Fragment?: |
true |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
159
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
207
 |
Fragment?: |
true |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
188
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
189
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
378
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein Domain |
Type: |
Domain |
Description: |
A key aspect of eukaryotic intracellular trafficking is the sorting of cell-surface proteins into multi-vesicular endosomes or bodies (MVBs), which eventually fuse with the lysosome, where they are degraded by lipases and peptidases. This is the primary mechanism for down-regulation of signaling via transmembrane receptors and removal of misfolded or defective membrane proteins. This process is also utilised by several viruses (e.g. HIV-1) to facilitate budding of their virions from the cell-membrane. Studies in animals and fungi have shown that it depends on an intricate series of interactions, which is initiated via ubiquitination (typically one or more mono-ubiquitinations) of the cytoplasmic tails of membrane proteins by specific E3 ligases. Ubiquitinated membrane proteins are then captured into endosomes by the ESCRT system and prevented from being recycled back to the plasma membrane via the retrograde trafficking system. The ESCRT system also folds the endosomal membranes into invaginations that are concentrated in these ubiquitinated targets and catalyzes their abscission into intra-luminal-vesicles inside the endosome. This largely seals the fate of these membrane proteins as targets for lysosomal degradation. The ESCRT system is comprised of 4 major protein complexes, ESCRT-0 to ESCRT-III, which are successively involved in the above-described steps [].ESCRT-I contains three subunits that are conserved between yeast and animals, namely the inactive E2-ligase protein TSG101/VPS23, VPS28 and VPS37. Additionally, both yeast and metazoan ESCRT-I contain a fourth subunit termed MVB12 (multivesicular body sorting factor of 12 kD); however, the MVB12 subunits from the two lineages do not show significant sequence similarity. The metazoan MVB12 proteins contain two distinct conserved domains that occur independently in various proteins. The C-terminal region of MVB12, which is shared with ubiquitin associated protein-1 (UBAP1), forms the UBAP1-MVB12 associated (UMA) domain. Human UBAP1 is implicated in nasopharyngeal carcinoma risk and fronto-temporal lobar degeneration. The UMA domain is also found in several other poorly characterised proteins, including at leat one orthologous group of proteins conserved in vertebrates prototyped be the human protein LOC390595 and another group conserved across Metazoa typified by human tcag7.903. The UMA domain found in MVB12 and UBAP1 defines a novel adaptor that might recruit diverse targets to ESCRT-I. The different UMA proteins might function as alternative as MVB12-like subunit that recruit different targets via their specific intercation modules (such as MABP) or UBA or the specific extensions) to the ESCRT-I complex [].This entry represents the UMA domain, which contains a conserved proline followed by a hydrophobic residue in the N terminus and a nearly absolutely conserved glutamate at the C terminus. It is predicted to adopt an alpha+beta fold []. |
|
•
•
•
•
•
|
Protein Domain |
Type: |
Domain |
Description: |
A key aspect of eukaryotic intracellular trafficking is the sorting of cell-surface proteins into multi-vesicular endosomes or bodies (MVBs), which eventually fuse with the lysosome, where they are degraded by lipases and peptidases. This is the primary mechanism for down-regulation of signaling via transmembrane receptors and removal of misfolded or defective membrane proteins. This process is also utilised by several viruses (e.g. HIV-1) to facilitate budding of their virions from the cell-membrane. Studies in animals and fungi have shown that it depends on an intricate series of interactions, which is initiated via ubiquitination (typically one or more mono-ubiquitinations) of the cytoplasmic tails of membrane proteins by specific E3 ligases. Ubiquitinated membrane proteins are then captured into endosomes by the ESCRT system and prevented from being recycled back to the plasma membrane via the retrograde trafficking system. The ESCRT system also folds the endosomal membranes into invaginations that are concentrated in these ubiquitinated targets and catalyzes their abscission into intra-luminal-vesicles inside the endosome. This largely seals the fate of these membrane proteins as targets for lysosomal degradation. The ESCRT system is comprised of 4 major protein complexes, ESCRT-0 to ESCRT-III, which are successively involved in the above-described steps [].ESCRT-I contains three subunits that are conserved between yeast and animals, namely the inactive E2-ligase protein TSG101/VPS23, VPS28 and VPS37. Additionally, both yeast and metazoan ESCRT-I contain a fourth subunit termed MVB12 (multivesicular body sorting factor of 12 kD); however, the MVB12 subunits from the two lineages do not show significant sequence similarity. The metazoan MVB12 proteins contain two distinct conserved domains that occur independently in various proteins. The N-terminal region of MVB12 forms the MVB12-associated β-prism (MABP), which is also found in DENND4A/B/C from vertebrates, the membrane trafficking regulator Crag from Drosophila, bacterial proteins typified by the MAC/perforin (MACPF)-like protein plu1415 from Photorhabdus luminescens and uncharacterised proteins from choanoflagellates and stamenopiles. It has been suggested that the MABP domain has a membrane-associated function, perhaps even specific interactions with membrane components. It is plausible that the eukaryotic MABP domains are adaptators that help linking other associated domains found in the same polypeptide to vesicular membranes [].The MABP domain has an internal repeat structure of three homologous segments. Consitent with this, the structurally characterised representative Photorhabdus plu1415, showed that this region precisely corresponds to a type-I β-prism domain with an internal three fold symetry. Each of the three sub-domains of the β-prism structure is a distinctive three-stranded β-sheet. The MABP domain shares a triradial symmetry with β-sheets parallel to the prism axis. The β-prism fold is associated with membrane interaction. The majority of the eukaryotic MABP domain versions contain a conserved cysteine in the first and third subdomain of the β-prism [, ]. |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
317
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
271
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
206
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
288
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Publication |
First Author: |
de Souza RF |
Year: |
2010 |
Journal: |
Bioinformatics |
Title: |
UMA and MABP domains throw light on receptor endocytosis and selection of endosomal cargoes. |
Volume: |
26 |
Issue: |
12 |
Pages: |
1477-80 |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
72
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
189
 |
Fragment?: |
true |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
137
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
384
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
502
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
141
 |
Fragment?: |
true |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
417
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
392
 |
Fragment?: |
true |
|
•
•
•
•
•
|
Publication |
First Author: |
Rosado CJ |
Year: |
2007 |
Journal: |
Science |
Title: |
A common fold mediates vertebrate defense and bacterial attack. |
Volume: |
317 |
Issue: |
5844 |
Pages: |
1548-51 |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
1499
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
1906
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
1510
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
1615
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
1869
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
1354
 |
Fragment?: |
false |
|
•
•
•
•
•
|