|  Help  |  About  |  Contact Us

Publication : Mpl receptor defect leads to earlier appearance of hematopoietic cells/hematopoietic stem cells in the Aorta-Gonad-Mesonephros region, with increased apoptosis.

First Author  Fleury M Year  2010
Journal  Int J Dev Biol Volume  54
Issue  6-7 Pages  1067-74
PubMed ID  20711984 Mgi Jnum  J:199353
Mgi Id  MGI:5502303 Doi  10.1387/ijdb.103104mf
Citation  Fleury M, et al. (2010) Mpl receptor defect leads to earlier appearance of hematopoietic cells/hematopoietic stem cells in the Aorta-Gonad-Mesonephros region, with increased apoptosis. Int J Dev Biol 54(6-7):1067-74
abstractText  In a previous study, we underlined the functional role of the TPO receptor, Mpl, in the establishment of definitive mouse hematopoiesis, by demonstrating that the lack of Mpl led to a delayed production of definitive hematopoietic cells in the aorta-gonad-mesonephros (AGM) region, and resulted in the production of hematopoietic stem cells (HSCs) with an impaired activity at E11.5. In order to more accurately estimate the role of Mpl during generation of HSCs in the aorta, we performed an analysis of these AGMs at the time of the first HSC emergence (E10.5). Our results indicated that while Mpl-/- AGMs were found to contain more hematopoietic cells (HC) than C57Bl6 AGMs at E10.5, a defect in the expansion process of the HC/HSCs was detected in explant cultures of these AGMs, likely due to an increased apoptosis of these cells. To determine the molecular mechanisms by which invalidation of Mpl receptor affects the temporal distribution and expansion of HC/HSCs in the AGM, a study of the transcription level of of Mpl target genes was conducted. Expression of Runx1, a master transcription factor for the formation of hematopoietic progenitor (HP) cells and HSCs from the vasculature, as well as expression of Meis1 and HoxB4, known to play a role in self-renewal and expansion of HSCs, were found to be down regulated in E10.5 Mpl-/- AGMs. Our data indicate that Mpl is an active player during the first steps of definitive hematopoiesis establishment through direct regulation of the expression of transcription factors or genes important for the self-renewal, proliferation and apoptosis of HSCs.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

13 Bio Entities

Trail: Publication

14 Expression

Trail: Publication