|  Help  |  About  |  Contact Us

Publication : Paracrine release of IL-12 stimulates IFN-gamma production and dramatically enhances the antigen-specific T cell response after vaccination with a novel peptide-based cancer vaccine.

First Author  Salem ML Year  2004
Journal  J Immunol Volume  172
Issue  9 Pages  5159-67
PubMed ID  15100252 Mgi Jnum  J:89681
Mgi Id  MGI:3041048 Doi  10.4049/jimmunol.172.9.5159
Citation  Salem ML, et al. (2004) Paracrine release of IL-12 stimulates IFN-gamma production and dramatically enhances the antigen-specific T cell response after vaccination with a novel peptide-based cancer vaccine. J Immunol 172(9):5159-67
abstractText  Interleukin-12 can act as a potent adjuvant for T cell vaccines, but its clinical use is limited by toxicity. Paracrine administration of IL-12 could significantly enhance the response to such vaccines without the toxicity associated with systemic administration. We have developed a novel vaccine delivery system (designated F2 gel matrix) composed of poly-N-acetyl glucosamine that has the dual properties of a sustained-release delivery system and a potent adjuvant. To test the efficacy of paracrine IL-12, we incorporated this cytokine into F2 gel matrix and monitored the response of OT-1 T cells in an adoptive transfer model. Recipient mice were vaccinated with F2 gel/SIINFEKL, F2 gel/SIINFEKL/IL-12 (paracrine IL-12), or F2 gel/SIINFEKL plus systemic IL-12 (systemic IL-12). Systemic levels of IL-12 were lower in paracrine IL-12-treated mice, suggesting that paracrine administration of IL-12 may be associated with less toxicity. However, paracrine administration of IL-12 was associated with an enhanced Ag-specific T cell proliferative and functional response. Furthermore, paracrine IL-12 promoted the generation of a stable, functional memory T cell population and was associated with protection from tumor challenge. To study the mechanisms underlying this enhanced response, wild-type and gene-deficient mice were used. The enhanced immune response was significantly reduced in IFN-gamma(-/-) and IL-12R beta 2(-/-) recipient mice suggesting that the role of IL-12 is mediated, at least in part, by host cells. Collectively, the results support the potential of F2 gel matrix as a vaccine delivery system and suggest that sustained paracrine release of IL-12 has potential clinical application.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

3 Bio Entities

Trail: Publication

0 Expression