|  Help  |  About  |  Contact Us

Publication : The mouse Na(+)-sulfate cotransporter gene Nas1. Cloning, tissue distribution, gene structure, chromosomal assignment, and transcriptional regulation by vitamin D.

First Author  Beck L Year  2000
Journal  J Biol Chem Volume  275
Issue  16 Pages  11880-90
PubMed ID  10766815 Mgi Jnum  J:61656
Mgi Id  MGI:1355391 Doi  10.1074/jbc.275.16.11880
Citation  Beck L, et al. (2000) The mouse Na(+)-sulfate cotransporter gene Nas1. Cloning, tissue distribution, gene structure, chromosomal assignment, and transcriptional regulation by vitamin D. J Biol Chem 275(16):11880-90
abstractText  NaSi-1 is a Na(+)-sulfate cotransporter expressed on the apical membrane of the renal proximal tubule and plays an important role in sulfate reabsorption. To understand the molecular mechanisms that mediate the regulation of NaSi-1, we have isolated and characterized the mouse NaSi-1 cDNA (mNaSi-1), gene (Nas1), and promoter region and determined Nas1 chromosomal localization. The mNaSi-1 cDNA encodes a protein of 594 amino acids with 13 putative transmembrane segments, inducing high affinity Na(+)-dependent transport of sulfate in Xenopus oocytes. Three different mNaSi-1 transcripts derived from alternative polyadenylation and splicing were identified in kidney and intestine. The Nas1 gene is a single copy gene comprising 15 exons spread over 75 kilobase pairs that maps to mouse chromosome 6. Transcription initiation occurs from a single site, 29 base pairs downstream to a TATA box-like sequence. The promoter is AT-rich (61%), contains a number of well characterized cis-acting elements, and can drive basal transcriptional activity in opossum kidney cells but not in COS-1 or NIH3T3 cells. We demonstrated that 1,25-dihydroxyvitamin D(3) stimulated the transcriptional activity of the Nas1 promoter in transiently transfected opossum kidney cells. This study represents the first characterization of the genomic organization of a Na(+)-sulfate cotransporter gene. It also provides the basis for a detailed analysis of Nas1 gene regulation and the tools required for assessing Nas1 role in sulfate homeostasis using targeted gene manipulation in mice.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

2 Authors

7 Bio Entities

Trail: Publication

0 Expression