|  Help  |  About  |  Contact Us

Publication : A Presenilin-2-ARF4 trafficking axis modulates Notch signaling during epidermal differentiation.

First Author  Ezratty EJ Year  2016
Journal  J Cell Biol Volume  214
Issue  1 Pages  89-101
PubMed ID  27354375 Mgi Jnum  J:236794
Mgi Id  MGI:5807294 Doi  10.1083/jcb.201508082
Citation  Ezratty EJ, et al. (2016) A Presenilin-2-ARF4 trafficking axis modulates Notch signaling during epidermal differentiation. J Cell Biol 214(1):89-101
abstractText  How primary cilia impact epidermal growth and differentiation during embryogenesis is poorly understood. Here, we show that during skin development, Notch signaling occurs within the ciliated, differentiating cells of the first few suprabasal epidermal layers. Moreover, both Notch signaling and cilia disappear in the upper layers, where key ciliary proteins distribute to cell-cell borders. Extending this correlation, we find that Presenilin-2 localizes to basal bodies/cilia through a conserved VxPx motif. When this motif is mutated, a GFP-tagged Presenilin-2 still localizes to intercellular borders, but basal body localization is lost. Notably, in contrast to wild type, this mutant fails to rescue epidermal differentiation defects seen upon Psen1 and 2 knockdown. Screening components implicated in ciliary targeting and polarized exocytosis, we provide evidence that the small GTPase ARF4 is required for Presenilin basal body localization, Notch signaling, and subsequent epidermal differentiation. Collectively, our findings raise the possibility that ARF4-dependent polarized exocytosis acts through the basal body-ciliary complex to spatially regulate Notch signaling during epidermal differentiation.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

11 Bio Entities

Trail: Publication

0 Expression