|  Help  |  About  |  Contact Us

Publication : IL-33, but not thymic stromal lymphopoietin or IL-25, is central to mite and peanut allergic sensitization.

First Author  Chu DK Year  2013
Journal  J Allergy Clin Immunol Volume  131
Issue  1 Pages  187-200.e1-8
PubMed ID  23006545 Mgi Jnum  J:315282
Mgi Id  MGI:6829995 Doi  10.1016/j.jaci.2012.08.002
Citation  Chu DK, et al. (2013) IL-33, but not thymic stromal lymphopoietin or IL-25, is central to mite and peanut allergic sensitization. J Allergy Clin Immunol 131(1):187-200.e1-8
abstractText  BACKGROUND: Allergen exposure at lung and gut mucosae can lead to aberrant T(H)2 immunity and allergic disease. The epithelium-associated cytokines thymic stromal lymphopoietin (TSLP), IL-25, and IL-33 are suggested to be important for the initiation of these responses. OBJECTIVE: We sought to investigate the contributions of TSLP, IL-25, and IL-33 in the development of allergic disease to the common allergens house dust mite (HDM) or peanut. METHODS: Neutralizing antibodies or mice deficient in TSLP, IL-25, or IL-33 signaling were exposed to HDM intranasally or peanut intragastrically, and immune inflammatory and physiologic responses were evaluated. In vitro assays were performed to examine specific dendritic cell (DC) functions. RESULTS: We showed that experimental HDM-induced allergic asthma and food allergy and anaphylaxis to peanut were associated with TSLP production but developed independently of TSLP, likely because these allergens functionally mimicked TSLP inhibition of IL-12 production and induction of OX40 ligand (OX40L) on DCs. Blockade of OX40L significantly lessened allergic responses to HDM or peanut. Although IL-25 and IL-33 induced OX40L on DCs in vitro, only IL-33 signaling was necessary for intact allergic immunity, likely because of its superior ability to induce DC OX40L and expand innate lymphoid cells in vivo. CONCLUSION: These data identify a nonredundant, IL-33-driven mechanism initiating T(H)2 responses to the clinically relevant allergens HDM and peanut. Our findings, along with those in infectious and transgenic/surrogate allergen systems, favor a paradigm whereby multiple molecular pathways can initiate T(H)2 immunity, which has implications for the conceptualization and manipulation of these responses in health and disease.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

16 Bio Entities

Trail: Publication

0 Expression