|  Help  |  About  |  Contact Us

Publication : Myomegalin is a novel protein of the golgi/centrosome that interacts with a cyclic nucleotide phosphodiesterase.

First Author  Verde I Year  2001
Journal  J Biol Chem Volume  276
Issue  14 Pages  11189-98
PubMed ID  11134006 Mgi Jnum  J:169806
Mgi Id  MGI:4942259 Doi  10.1074/jbc.M006546200
Citation  Verde I, et al. (2001) Myomegalin is a novel protein of the golgi/centrosome that interacts with a cyclic nucleotide phosphodiesterase. J Biol Chem 276(14):11189-98
abstractText  Subcellular targeting of the components of the cAMP-dependent pathway is thought to be essential for intracellular signaling. Here we have identified a novel protein, named myomegalin, that interacts with the cyclic nucleotide phosphodiesterase PDE4D, thereby targeting it to particulate structures. Myomegalin is a large 2,324-amino acid protein mostly composed of alpha-helical and coiled-coil structures, with domains shared with microtubule-associated proteins, and a leucine zipper identical to that found in the Drosophila centrosomin. Transcripts of 7.5-8 kilobases were present in most tissues, whereas a short mRNA of 2.4 kilobases was detected only in rat testis. A third splicing variant was expressed predominantly in rat heart. Antibodies against the deduced sequence recognized particulate myomegalin proteins of 62 kDa in testis and 230-250 kDa in heart and skeletal muscle. Immunocytochemistry and transfection studies demonstrate colocalization of PDE4D and myomegalin in the Golgi/centrosomal area of cultured cells, and in sarcomeric structures of skeletal muscle. Myomegalin expressed in COS-7 cells coimmunoprecipitated with PDE4D3 and sequestered it to particulate structures. These findings indicate that myomegalin is a novel protein that functions as an anchor to localize components of the cAMP-dependent pathway to the Golgi/centrosomal region of the cell.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

3 Bio Entities

Trail: Publication

0 Expression