|  Help  |  About  |  Contact Us

Publication : Transcriptome-wide co-expression analysis identifies LRRC2 as a novel mediator of mitochondrial and cardiac function.

First Author  McDermott-Roe C Year  2017
Journal  PLoS One Volume  12
Issue  2 Pages  e0170458
PubMed ID  28158196 Mgi Jnum  J:245749
Mgi Id  MGI:5915282 Doi  10.1371/journal.pone.0170458
Citation  McDermott-Roe C, et al. (2017) Transcriptome-wide co-expression analysis identifies LRRC2 as a novel mediator of mitochondrial and cardiac function. PLoS One 12(2):e0170458
abstractText  Mitochondrial dysfunction contributes to myriad monogenic and complex pathologies. To understand the underlying mechanisms, it is essential to define the full complement of proteins that modulate mitochondrial function. To identify such proteins, we performed a meta-analysis of publicly available gene expression data. Gene co-expression analysis of a large and heterogeneous compendium of microarray data nominated a sub-population of transcripts that whilst highly correlated with known mitochondrial protein-encoding transcripts (MPETs), are not themselves recognized as generating proteins either localized to the mitochondrion or pertinent to functions therein. To focus the analysis on a medically-important condition with a strong yet incompletely understood mitochondrial component, candidates were cross-referenced with an MPET-enriched module independently generated via genome-wide co-expression network analysis of a human heart failure gene expression dataset. The strongest uncharacterized candidate in the analysis was Leucine Rich Repeat Containing 2 (LRRC2). LRRC2 was found to be localized to the mitochondria in human cells and transcriptionally-regulated by the mitochondrial master regulator Pgc-1alpha. We report that Lrrc2 transcript abundance correlates with that of beta-MHC, a canonical marker of cardiac hypertrophy in humans and experimentally demonstrated an elevation in Lrrc2 transcript in in vitro and in vivo rodent models of cardiac hypertrophy as well as in patients with dilated cardiomyopathy. RNAi-mediated Lrrc2 knockdown in a rat-derived cardiomyocyte cell line resulted in enhanced expression of canonical hypertrophic biomarkers as well as increased mitochondrial mass in the context of increased Pgc-1alpha expression. In conclusion, our meta-analysis represents a simple yet powerful springboard for the nomination of putative mitochondrially-pertinent proteins relevant to cardiac function and enabled the identification of LRRC2 as a novel mitochondrially-relevant protein and regulator of the hypertrophic response.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

9 Bio Entities

Trail: Publication

0 Expression