|  Help  |  About  |  Contact Us

Publication : Molecular cloning, genomic mapping, and expression of two secretor blood group alpha (1,2)fucosyltransferase genes differentially regulated in mouse uterine epithelium and gastrointestinal tract.

First Author  Domino SE Year  2001
Journal  J Biol Chem Volume  276
Issue  26 Pages  23748-56
PubMed ID  11323419 Mgi Jnum  J:70130
Mgi Id  MGI:2136486 Doi  10.1074/jbc.M100735200
Citation  Domino SE, et al. (2001) Molecular cloning, genomic mapping, and expression of two secretor blood group alpha (1,2)fucosyltransferase genes differentially regulated in mouse uterine epithelium and gastrointestinal tract. J Biol Chem 276(26):23748-56
abstractText  Fucosylated oligosaccharides have been proposed to be involved in multiple cell-cell interactions, including mouse blastocyst adhesion and intestine-microbe interactions. To begin to define the regulation and function of terminal alpha(1,2)fucosylated carbohydrates in these and other tissues, we isolated and characterized a 85-kilobase (kb) genomic region of mouse chromosome 7, 23.2 centimorgans analogous to human chromosome 19q13.3 that encodes three alpha(1,2)fucosyltransferases. Gene-specific DNA probes from the open reading frames of the mouse fucosyltransferase genes corresponding to human FUT1, FUT2, and SEC1 demonstrate distinct tissue-specific expression patterns by Northern blot analyses. Flow cytometry profiles of cultured cells transfected with DNA segments containing the open reading frames of the mouse genes confirm that each encodes an alpha(1,2)fucosyltransferase. In uterus and colon, a 3.3-kb FUT2 mRNA represents the major fucosyltransferase gene expressed. Steady-state FUT2 mRNA levels are cyclically regulated during the estrus cycle, increasing 10-fold from early diestrus to a relative maximum in proestrus. In contrast, SEC1 and FUT1 do not show prominently regulated expression in uterus. FUT2 expression localizes to luminal uterine epithelium by in situ hybridization, implying that this gene determines expression of cell surface Fucalpha1-->2Galbeta epitopes proposed to mediate blastocyst adhesion.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

3 Authors

6 Bio Entities

Trail: Publication

0 Expression