|  Help  |  About  |  Contact Us

Publication : Nemo-like kinase-myocyte enhancer factor 2A signaling regulates anterior formation in Xenopus development.

First Author  Satoh K Year  2007
Journal  Mol Cell Biol Volume  27
Issue  21 Pages  7623-30
PubMed ID  17785444 Mgi Jnum  J:148054
Mgi Id  MGI:3843420 Doi  10.1128/MCB.01481-07
Citation  Satoh K, et al. (2007) Nemo-like kinase-myocyte enhancer factor 2A signaling regulates anterior formation in Xenopus development. Mol Cell Biol 27(21):7623-30
abstractText  The development of anterior neural structure in Xenopus laevis requires the inhibition of bone morphogenic protein 4 and Wnt signaling. We previously reported that Nemo-like kinase (NLK) negatively regulates Wnt signaling via the phosphorylation of T-cell factor/lymphoid enhancer factor. However, the molecular events occurring downstream of NLK pathways in early neural development remain unclear. In the present study, we identified the transcription factor myocyte enhancer factor 2A (MEF2A) as a novel substrate for NLK. NLK regulates the function of Xenopus MEF2A (xMEF2A) via phosphorylation, and this modification can be inhibited by the depletion of endogenous NLK. In Xenopus embryos, the depletion of either NLK or MEF2A results in a severe defect in anterior development. The endogenous expression of anterior markers was blocked by the depletion of endogenous Xenopus NLK (xNLK) or xMEF2A but, notably, not by the depletion of other xMEF2 family proteins, xMEF2C and xMEF2D. Defects in head formation or the expression of the anterior marker genes caused by the depletion of endogenous xMEF2A could be eliminated by the expression of wild-type xMEF2A, but not xMEF2A containing mutated xNLK phosphorylation sites. Furthermore, the expression of xNLK-induced anterior markers was efficiently blocked by the depletion of endogenous xMEF2A in animal pole explants. These results show that NLK specifically regulates the MEF2A activity required for anterior formation in Xenopus development.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

6 Bio Entities

Trail: Publication

0 Expression