|  Help  |  About  |  Contact Us

Protein Domain : Restriction endonuclease, type II, DpnII-like

Primary Identifier  IPR007637 Type  Domain
Short Name  Restrct_endonuc_II_DpnII-like
description  There are four classes of restriction endonucleases: types I, II,III and IV. All types of enzymes recognise specific short DNA sequences and carry out the endonucleolytic cleavage of DNA to give specific double-stranded fragments with terminal 5'-phosphates. They differ in their recognition sequence, subunit composition, cleavage position, and cofactor requirements [, ], as summarised below:Type I enzymes () cleave at sites remote from recognition site; require both ATP and S-adenosyl-L-methionine to function; multifunctional protein with both restriction and methylase () activities.Type II enzymes () cleave within or at short specific distances from recognition site; most require magnesium; single function (restriction) enzymes independent of methylase.Type III enzymes () cleave at sites a short distance from recognition site; require ATP (but doesn't hydrolyse it); S-adenosyl-L-methionine stimulates reaction but is not required; exists as part of a complex with a modification methylase methylase ().Type IV enzymes target methylated DNA.Type II restriction endonucleases () are components of prokaryotic DNA restriction-modification mechanisms that protect the organism against invading foreign DNA. These site-specific deoxyribonucleases catalyse the endonucleolytic cleavage of DNA to give specific double-stranded fragments with terminal 5'-phosphates. Of the 3000 restriction endonucleases that have been characterised, most are homodimeric or tetrameric enzymes that cleave target DNA at sequence-specific sites close to the recognition site. For homodimeric enzymes, the recognition site is usually a palindromic sequence 4-8 bp in length. Most enzymes require magnesium ions as a cofactor for catalysis. Although they can vary in their mode of recognition, many restriction endonucleases share a similar structural core comprising four β-strands and one α-helix, as well as a similar mechanism of cleavage, suggesting a common ancestral origin []. However, there is still considerable diversity amongst restriction endonucleases [, ]. The target site recognition process triggers large conformational changes of the enzyme and the target DNA, leading to the activation of the catalytic centres. Like other DNA binding proteins, restriction enzymes are capable of non-specific DNA binding as well, which is the prerequisite for efficient target site location by facilitated diffusion. Non-specific binding usually does not involve interactions with the bases but only with the DNA backbone []. This entry is found in type II restriction enzymes such as DpnII (), which recognises the double-stranded unmethylated sequence GATC and cleave before G-1 [], where it encompasess the full length of the protein. It is also found in a number of proteins of unknown function, where it is located adjacent to a DNA adenine-specific methyltransferase domain ().

0 Child Features

0 Parent Features

0 Protein Domain Regions