|  Help  |  About  |  Contact Us

Publication : Fads3 modulates docosahexaenoic acid in liver and brain.

First Author  Zhang JY Year  2017
Journal  Prostaglandins Leukot Essent Fatty Acids Volume  123
Pages  25-32 PubMed ID  28838557
Mgi Jnum  J:256005 Mgi Id  MGI:6114438
Doi  10.1016/j.plefa.2017.07.001 Citation  Zhang JY, et al. (2017) Fads3 modulates docosahexaenoic acid in liver and brain. Prostaglandins Leukot Essent Fatty Acids 123:25-32
abstractText  Fatty acid desaturase 3 (FADS3) is the third member of the FADS gene cluster. FADS1 and FADS2 code for enzymes required for highly unsaturated fatty acid (HUFA) biosynthesis, but FADS3 function remains elusive. We generated the first Fads3 knockout (KO) mouse with an aim to characterize its metabolic phenotype and clues to in vivo function. All mice (wild type (WT) and KO) were fed facility rodent chow devoid of HUFA. No differences in overt phenotypes (survival, fertility, growth rate) were observed. Docosahexaenoic acid (DHA, 22:6n-3) levels in the brain of postnatal day 1 (P1) KO mice were lower than the WT (P < 0.05). The ratio of docosapentaenoic acid (DPA, 22:5n-3) to DHA in P1 KO liver was higher than in WT suggesting lower desaturase activity. Concomitantly, 20:4n-6 was lower but its elongation product 22:4n-6 was greater in the liver of P1 KO mice. P1 KO liver Fads1 and Fads2 mRNA levels were significantly downregulated whereas expression levels of elongation of very long chain 2 (Elovl2) and Elovl5 genes were upregulated compared to age-matched WT. No Delta13-desaturation of vaccenic acid was observed in liver or heart in WT mice expressing FADS3 as was reported in vitro. Taken together, the fatty acid compositional results suggest that Fads3 enhances liver-mediated 22:6n-3 synthesis to support brain 22:6n-3 accretion before and during the brain growth spurt.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

3 Bio Entities

Trail: Publication

0 Expression