|  Help  |  About  |  Contact Us

Publication : cAMP-mediated regulation of murine intestinal/pancreatic Na+/HCO3- cotransporter subtype pNBC1.

First Author  Bachmann O Year  2003
Journal  Am J Physiol Gastrointest Liver Physiol Volume  284
Issue  1 Pages  G37-45
PubMed ID  12388213 Mgi Jnum  J:326233
Mgi Id  MGI:7310009 Doi  10.1152/ajpgi.00209.2002
Citation  Bachmann O, et al. (2003) cAMP-mediated regulation of murine intestinal/pancreatic Na+/HCO3- cotransporter subtype pNBC1. Am J Physiol Gastrointest Liver Physiol 284(1):G37-45
abstractText  Basolateral Na(+)-HCO(3)(-) cotransport is essential for intestinal anion secretion, and indirect evidence suggests that it may be stimulated by a rise of intracellular cAMP. We therefore investigated the expression, activity, and regulation by cAMP of the Na(+)-HCO(3)(-) cotransporter isoforms NBC1 and NBCn1 in isolated murine colonic crypts. Na(+)-HCO(3)(-) transport rates were measured fluorometrically in BCECF-loaded crypts, and mRNA expression levels and localization were determined by semiquantitative PCR and in situ hybridization. Acid-activated Na(+)-HCO(3)(-) cotransport rates were 5.07 +/- 0.7 mM/min and increased by 62% after forskolin stimulation. NBC1 mRNA was more abundant in colonic crypts than in surface cells, and crypts expressed far more NBC1 than NBCn1. To investigate whether the cAMP-induced Na(+)-HCO(3)(-) cotransport activation was secondary to secretion-associated changes in HCO(3)(-) or cell volume, we measured potential forskolin-induced changes in intracellular pH and assessed Na(+)-HCO(3)(-) transport activity in CFTR -/- crypts (in which no forskolin-induced cell shrinkage occurs). We found 30% reduced Na(+)-HCO(3)(-) transport rates in CFTR -/- compared with CFTR +/+ crypts but similar Na(+)-HCO(3)(-) cotransport activation by forskolin. These studies establish the existence of an intracellular HCO(3)(-) concentration- and cell volume-independent activation of colonic NBC by an increase in intracellular cAMP.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

4 Bio Entities

Trail: Publication

0 Expression