|  Help  |  About  |  Contact Us

Publication : EphA-Ephrin-A-mediated beta cell communication regulates insulin secretion from pancreatic islets.

First Author  Konstantinova I Year  2007
Journal  Cell Volume  129
Issue  2 Pages  359-70
PubMed ID  17448994 Mgi Jnum  J:177156
Mgi Id  MGI:5294297 Doi  10.1016/j.cell.2007.02.044
Citation  Konstantinova I, et al. (2007) EphA-Ephrin-A-mediated beta cell communication regulates insulin secretion from pancreatic islets. Cell 129(2):359-70
abstractText  In vertebrates, beta cells are aggregated in the form of pancreatic islets. Within these islets, communication between beta cells inhibits basal insulin secretion and enhances glucose-stimulated insulin secretion, thus contributing to glucose homeostasis during fasting and feeding. In the search for the underlying molecular mechanism, we have discovered that beta cells communicate via ephrin-As and EphAs. We provide evidence that ephrin-A5 is required for glucose-stimulated insulin secretion. We further show that EphA-ephrin-A-mediated beta cell communication is bidirectional: EphA forward signaling inhibits insulin secretion, whereas ephrin-A reverse signaling stimulates insulin secretion. EphA forward signaling is downregulated in response to glucose, which indicates that, under basal conditions, beta cells use EphA forward signaling to suppress insulin secretion and that, under stimulatory conditions, they shift to ephrin-A reverse signaling to enhance insulin secretion. Thus, we explain how beta cell communication in pancreatic islets conversely affects basal and glucose-stimulated insulin secretion to improve glucose homeostasis.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

7 Bio Entities

Trail: Publication

0 Expression