|  Help  |  About  |  Contact Us

Publication : Suprabasal Dsg2 expression in transgenic mouse skin confers a hyperproliferative and apoptosis-resistant phenotype to keratinocytes.

First Author  Brennan D Year  2007
Journal  J Cell Sci Volume  120
Issue  Pt 5 Pages  758-71
PubMed ID  17284515 Mgi Jnum  J:120757
Mgi Id  MGI:3707932 Doi  10.1242/jcs.03392
Citation  Brennan D, et al. (2007) Suprabasal Dsg2 expression in transgenic mouse skin confers a hyperproliferative and apoptosis-resistant phenotype to keratinocytes. J Cell Sci 120(Pt 5):758-71
abstractText  Desmoglein 2 (Dsg2), a component of the desmosomal cell-cell adhesion structure, has been linked to invasion and metastasis in squamous cell carcinomas. However, it is unknown whether--and if so how--Dsg2 contributes to the malignant phenotype of keratinocytes. In this study, we addressed the consequences of Dsg2 overexpression under control of the involucrin promoter (Inv-Dsg2) in the epidermis of transgenic mice. These mice exhibited epidermal hyperkeratosis with slightly disrupted early and late differentiation markers, but intact epidermal barrier function. However, Inv-Dsg2 transgene expression was associated with extensive epidermal hyperplasia and increased keratinocyte proliferation in basal and suprabasal epidermal strata. Cultured Inv-Dsg2 keratinocytes showed enhanced cell survival in the anchorage-independent state that was critically dependent on EGF receptor activation and NF-kappaB activity. Consistent with the hyperproliferative and apoptosis-resistant phenotype of Inv-Dsg2 transgenic keratinocytes, we observed enhanced activation of multiple growth and survival pathways, including PI 3-kinase/AKT, MEK-MAPK, STAT3 and NF-kappaB, in the transgenic skin in situ. Finally, Inv-Dsg2 transgenic mice developed intraepidermal skin lesions resembling precancerous papillomas and were more susceptible to chemically induced carcinogenesis. In summary, overexpression of Dsg2 in epidermal keratinocytes deregulates multiple signaling pathways associated with increased growth rate, anchorage-independent cell survival, and the development of skin tumors in vivo.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

0 Bio Entities

0 Expression