|  Help  |  About  |  Contact Us

Publication : Simultaneous deletion of ghrelin and its receptor increases motor activity and energy expenditure.

First Author  Pfluger PT Year  2008
Journal  Am J Physiol Gastrointest Liver Physiol Volume  294
Issue  3 Pages  G610-8
PubMed ID  18048479 Mgi Jnum  J:132302
Mgi Id  MGI:3775675 Doi  10.1152/ajpgi.00321.2007
Citation  Pfluger PT, et al. (2008) Simultaneous deletion of ghrelin and its receptor increases motor activity and energy expenditure. Am J Physiol Gastrointest Liver Physiol 294(3):G610-8
abstractText  Administration of chemically synthesized ghrelin (Ghr) peptide has been shown to increase food intake and body adiposity in most species. However, the biological role of endogenous Ghr in the molecular control of energy metabolism is far less understood. Mice deficient for either Ghr or its receptor (the growth hormone secretagogue receptor, GHS-R1a) seem to exhibit enhanced protection against high-fat diet-induced obesity but do not show a substantial metabolic phenotype on a standard diet. Here we present the first mouse mutant lacking both Ghr and the Ghr receptor. We demonstrate that simultaneous genetic disruption of both genes of the Ghr system leads to an enhanced energy metabolism phenotype. Ghr/Ghr receptor double knockout (dKO) mice exhibit decreased body weight, increased energy expenditure, and increased motor activity on a standard diet without exposure to a high caloric environment. Mice on the same genetic background lacking either the Ghr or the Ghr receptor gene did not exhibit such a phenotype on standard chow, thereby confirming earlier reports. No differences in food intake, meal pattern, or lean mass were observed between dKO, Ghr-deficient, Ghr receptor-deficient, and wild-type (WT) control mice. Only dKO showed a slight decrease in body length. In summary, simultaneous deletion of Ghr and its receptor enhances the metabolic phenotype of single gene-deficient mice compared with WT mice, possibly suggesting the existence of additional, as of yet unknown, molecular components of the endogenous Ghr system.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

6 Bio Entities

Trail: Publication

0 Expression