|  Help  |  About  |  Contact Us

Publication : Erythropoietin inhibits SGK1-dependent TH17 induction and TH17-dependent kidney disease.

First Author  Donadei C Year  2019
Journal  JCI Insight Volume  5
PubMed ID  31013255 Mgi Jnum  J:298006
Mgi Id  MGI:6472518 Doi  10.1172/jci.insight.127428
Citation  Donadei C, et al. (2019) Erythropoietin inhibits SGK1-dependent TH17 induction and TH17-dependent kidney disease. JCI Insight 5
abstractText  IL-17-producing CD4+ cells (TH17) are pathogenically linked to autoimmunity including to autoimmune kidney disease. Erythropoietin's (EPO) newly recognized immunoregulatory functions and its predominant intra-renal source suggested that EPO physiologically regulates TH17 differentiation, thereby serving as a barrier to the development of autoimmune kidney disease. Using in vitro studies of human and murine cells and in vivo models, we show that EPO ligation of its receptor (EPO-R) on CD4+ T cells directly inhibits TH17 generation and promotes trans-differentiation of TH17 into IL-17-FOXP3+CD4+ T cells. Mechanistically, EPO/EPO-R ligation abrogates upregulation of SGK1 gene expression and blocks p38 activity to prevent SGK1 phosphorylation, thereby inhibiting RORC-mediated transcription of IL-17 and IL-23 receptor genes. In a murine model of TH17-dependent aristolochic acid (ArA)-induced, interstitial kidney disease associated with reduced renal EPO production, we demonstrate that transgenic EPO overexpression or recombinant EPO (rEPO) administration limits TH17 formation and clinical/histological disease expression. EPO/EPO-R ligations on CD4+ T cells abrogate, while absence of T cell-expressed EPO-R augments, TH17 induction and clinical/histological expression of pristane-induced glomerulonephritis (associated with decreased intrarenal EPO). rEPO prevents spontaneous glomerulonephritis and TH17 generation in MRL-lpr mice. Together, our findings indicate that EPO physiologically and therapeutically modulate TH17 cells to limit expression of TH17-associated autoimmune kidney disease.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

22 Bio Entities

Trail: Publication

0 Expression