|  Help  |  About  |  Contact Us

Publication : Prediction of the coding sequences of mouse homologues of FLJ genes: the complete nucleotide sequences of 110 mouse FLJ-homologous cDnas identified by screening of terminal sequences of cDNA clones randomly sampled from size-fractionated libraries.

First Author  Okazaki N Year  2004
Journal  DNA Res Volume  11
Issue  2 Pages  127-35
PubMed ID  15449545 Mgi Jnum  J:92574
Mgi Id  MGI:3053675 Doi  10.1093/dnares/11.2.127
Citation  Okazaki N, et al. (2004) Prediction of the coding sequences of mouse homologues of FLJ genes: the complete nucleotide sequences of 110 mouse FLJ-homologous cDnas identified by screening of terminal sequences of cDNA clones randomly sampled from size-fractionated libraries. DNA Res 11(2):127-35
abstractText  We have been conducting a mouse cDNA project to predict protein-coding sequences of mouse KIAA-homologous genes since 2001. As an extension of this project, we also started to accumulate mouse cDNA clones homologous to the human FLJ cDNA clones which are another long cDNA resource produced in our institute. We have isolated the cDNA clones from size-fractionated cDNA libraries derived from five different mouse tissues and natural killer T-cells. Although the human FLJ cDNA clones were originally derived from human spleen libraries, one-third of their mouse homologues were obtained from the brain library. We designated these homologues 'mFLJ' plus a 5-digit number and herein characterized 110 mFLJ cDNA clones. We assigned an integrity of the CDSs from the comparison of the 110 cDNA clones with the corresponding human FLJ cDNA clones. The average size of the 110 mouse cDNA sequences was 3.8 kb and that of the deduced amino acid sequences from their longest CDS in each cDNA was 663 amino acid residues. Homology and/or motif search against public databases revealed new domains and/or motifs in 26 mFLJ gene products which provide additional speculation regarding the function of FLJ genes.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

123 Bio Entities

Trail: Publication

0 Expression