|  Help  |  About  |  Contact Us

Publication : Myeloid Deletion of Nemo Causes Osteopetrosis in Mice Owing to Upregulation of Transcriptional Repressors.

First Author  Swarnkar G Year  2016
Journal  Sci Rep Volume  6
Pages  29896 PubMed ID  27435916
Mgi Jnum  J:257109 Mgi Id  MGI:6102074
Doi  10.1038/srep29896 Citation  Swarnkar G, et al. (2016) Myeloid Deletion of Nemo Causes Osteopetrosis in Mice Owing to Upregulation of Transcriptional Repressors. Sci Rep 6:29896
abstractText  The transcription factor NF-kappaB is central to numerous physiologic processes including bone development, and its activation is controlled by IKKgamma (also called NEMO), the regulatory subunit of IKK complex. NEMO is X-linked, and mutations in this gene result in Incontinentia Pigmenti in human hemizygous females. In mice, global deficiency causes embryonic lethality. In addition, certain point mutations in the NEMO (IKBKG) human gene manifest skeletal defects implicating NEMO in the regulation of bone homeostasis. To specifically investigate such role, we conditionally deleted Nemo from osteoclast and myeloid progenitors. Morphometric, histologic, and molecular analyses demonstrate that myeloid NEMO deletion causes osteopetrosis in mice. Mechanistically, NEMO deficiency hampered activation of IKK complex in osteoclast precursors, causing arrest of osteoclastogenesis and apoptosis. Interestingly, inhibiting apoptosis by genetic ablation of TNFr1 significantly increased cell survival, but failed to rescue osteoclastogenesis or reverse osteopetrosis. Based on this observation, we analyzed the expression of different regulators of osteoclastogenesis and discovered that NEMO deletion leads to increased RBPJ expression, resulting in a decrease of Blimp1 expression. Consequently, expression of IRF8 and Bcl6 which are targets of Blimp1 and potent osteoclastogenic transcriptional repressors, is increased. Thus, NEMO governs survival and osteoclast differentiation programs through serial regulation of multiple transcription factors.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

12 Bio Entities

Trail: Publication

0 Expression