|  Help  |  About  |  Contact Us

Protein Domain : Carboxypeptidase E, carboxypeptidase domain

Primary Identifier  IPR034232 Type  Domain
Short Name  M14_CPE_CPD
description  This entry represents the carboxypeptidase domain found in carboxypeptidase (CP) E (CPE, also known as carboxypeptidase H, and enkephalin convertase;(); MEROPS identifier M14.005). CPE belongs to subfamily M14B (N/E subfamily) of the M14 family of metallocarboxypeptidases (MCPs) []. It is an important enzyme responsible for the proteolytic processing of prohormone intermediates (such as pro-insulin, pro-opiomelanocortin, or pro-gonadotropin-releasing hormone) by specifically removing C-terminal basic residues []. In addition, it has been proposed that the regulated secretory pathway (RSP) of the nervous and endocrine systems utilizes membrane-bound CPE as a sorting receptor. A naturally occurring point mutation in CPE reduces the stability of the enzyme and causes its degradation, leading to an accumulation of numerous neuroendocrine peptides that result in obesity and hyperglycemia [, ]. Reduced CPE enzyme and receptor activity could underlie abnormal placental phenotypes from the observation that CPE is down-regulated in enlarged placentas of interspecific hybrid (interspecies hybrid placental dysplasia, IHPD) and cloned mice [].The carboxypeptidase A family can be divided into four subfamilies: M14A(carboxypeptidase A or digestive), M14B (carboxypeptidase H or regulatory), M14C (gamma-D-glutamyl-L-diamino acid peptidase I) and M14D (AGTPBP-1/Nna1-like proteins) [, ]. Members of subfamily M14B have longer C-termini than those of subfamily M14A [], and carboxypeptidase M (a member of the H family) is bound to the membrane by a glycosylphosphatidylinositol anchor, unlike the majority of the M14 family, which are soluble []. The zinc ligands have been determined as two histidines and a glutamate,and the catalytic residue has been identified as a C-terminal glutamate,but these do not form the characteristic metalloprotease HEXXH motif [, ]. Members of the carboxypeptidase A family are synthesised as inactive molecules with propeptides that must be cleaved to activate the enzyme. Structural studies of carboxypeptidases A and B reveal the propeptide to exist as a globular domain, followed by an extended α-helix; this shields the catalytic site, without specifically binding to it, while the substrate-binding site is blocked by making specific contacts [, ].

0 Child Features

1 Parent Features

2 Protein Domain Regions