|  Help  |  About  |  Contact Us

Publication : Expression specificity of the mouse exonuclease 1 (mExo1) gene.

First Author  Lee BI Year  1999
Journal  Nucleic Acids Res Volume  27
Issue  20 Pages  4114-20
PubMed ID  10497278 Mgi Jnum  J:58084
Mgi Id  MGI:1346707 Doi  10.1093/nar/27.20.4114
Citation  Lee BI, et al. (1999) Expression specificity of the mouse exonuclease 1 (mExo1) gene. Nucleic Acids Res 27(20):4114-20
abstractText  Genetic recombination involves either the homo-logous exchange of nearly identical chromosome regions or the direct alignment, annealing and ligation of processed DNA ends. These mechanisms are involved in repairing potentially lethal or mutagenic DNA damage and generating genetic diversity within the meiotic cell population and antibody repertoire. We report here the identification of a mouse gene, termed mExo1 for mouse exonuclease 1, which encodes a approximately 92 kDa protein that shares homology to proteins of the RAD2 nuclease family, most notably human 5' to 3' exonuclease Hex1/hExo1, yeast exonuclease 1 (Exo1) proteins and Drosophila melanogaster Tosca. The mExo1 gene maps to distal chromosome 1, consistent with the recent mapping of the orthologous HEX1 / hEXO1 gene to chromosome 1q42-q43. mExo1 is expressed prominently in testis, an area of active homologous recombination, and spleen, a prominent lymphoid tissue. An increased level of mExo1 mRNA was observed during a stage of testis development where cells that are actively involved in meiotic recombination arise first and represent a significant proportion of the germ cell population. Comparative evaluation of the expression patterns of the human and mouse genes, combined with previous biochemical and yeast genetic studies, indicate that the Exo1-like proteins are important contributors to chromosome processing during mammalian DNA repair and recombination.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

8 Bio Entities

Trail: Publication

0 Expression