|  Help  |  About  |  Contact Us

Publication : Role of sulfonylurea receptor type 1 subunits of ATP-sensitive potassium channels in myocardial ischemia/reperfusion injury.

First Author  Elrod JW Year  2008
Journal  Circulation Volume  117
Issue  11 Pages  1405-13
PubMed ID  18316485 Mgi Jnum  J:148446
Mgi Id  MGI:3844799 Doi  10.1161/CIRCULATIONAHA.107.745539
Citation  Elrod JW, et al. (2008) Role of sulfonylurea receptor type 1 subunits of ATP-sensitive potassium channels in myocardial ischemia/reperfusion injury. Circulation 117(11):1405-13
abstractText  BACKGROUND: Opening of cardiac ATP-sensitive potassium channels (K(ATP) channels) is a well-characterized protective mechanism against ischemia and reperfusion injury. Evidence exists for an involvement of both sarcolemmal and mitochondrial K(ATP) channels in such protection. Classically, cardiac sarcolemmal K(ATP) channels are thought to be composed of Kir6.2 (inward-rectifier potassium channel 6.2) and SUR2A (sulfonylurea receptor type 2A) subunits; however, the evidence is strong that SUR1 (sulfonylurea receptor type 1) subunits are also expressed in the heart and that they may have a functional role. The aim of this study, therefore, was to examine the role of SUR1 in myocardial infarction. METHODS AND RESULTS: We subjected mice lacking SUR1 subunits to in vivo myocardial ischemia/reperfusion injury. Interestingly, the SUR1-null mice were markedly protected against the ischemic insult, displaying a reduced infarct size and preservation of left ventricular function, which suggests a role for this K(ATP) channel subunit in cardiovascular function during conditions of stress. CONCLUSIONS: SUR1 subunits have a high sensitivity toward many sulfonylureas and certain K(ATP) channel-opening drugs. Their potential role during ischemic events should therefore be considered both in the interpretation of experimental data with pharmacological agents and in the clinical arena when the cardiovascular outcome of patients treated with antidiabetic sulfonylureas is being considered.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

3 Bio Entities

Trail: Publication

0 Expression