|  Help  |  About  |  Contact Us

Publication : Autophagy lipidation machinery regulates axonal microtubule dynamics but is dispensable for survival of mammalian neurons.

First Author  Negrete-Hurtado A Year  2020
Journal  Nat Commun Volume  11
Issue  1 Pages  1535
PubMed ID  32210230 Mgi Jnum  J:287544
Mgi Id  MGI:6405896 Doi  10.1038/s41467-020-15287-9
Citation  Negrete-Hurtado A, et al. (2020) Autophagy lipidation machinery regulates axonal microtubule dynamics but is dispensable for survival of mammalian neurons. Nat Commun 11(1):1535
abstractText  Neurons maintain axonal homeostasis via employing a unique organization of the microtubule (MT) cytoskeleton, which supports axonal morphology and provides tracks for intracellular transport. Abnormal MT-based trafficking hallmarks the pathology of neurodegenerative diseases, but the exact mechanism regulating MT dynamics in axons remains enigmatic. Here we report on a regulation of MT dynamics by AuTophaGy(ATG)-related proteins, which previously have been linked to the autophagy pathway. We find that ATG proteins required for LC3 lipid conjugation are dispensable for survival of excitatory neurons and instead regulate MT stability via controlling the abundance of the MT-binding protein CLASP2. This function of ATGs is independent of their role in autophagy and requires the active zone protein ELKS1. Our results highlight a non-canonical role of ATG proteins in neurons and suggest that pharmacological activation of autophagy may not only promote the degradation of cytoplasmic material, but also impair axonal integrity via altering MT stability.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

18 Bio Entities

Trail: Publication

0 Expression