|  Help  |  About  |  Contact Us

Publication : The signal peptide anchors apolipoprotein M in plasma lipoproteins and prevents rapid clearance of apolipoprotein M from plasma.

First Author  Christoffersen C Year  2008
Journal  J Biol Chem Volume  283
Issue  27 Pages  18765-72
PubMed ID  18460466 Mgi Jnum  J:138118
Mgi Id  MGI:3804331 Doi  10.1074/jbc.M800695200
Citation  Christoffersen C, et al. (2008) The signal peptide anchors apolipoprotein M in plasma lipoproteins and prevents rapid clearance of apolipoprotein M from plasma. J Biol Chem 283(27):18765-72
abstractText  Lipoproteins consist of lipids solubilized by apolipoproteins. The lipid-binding structural motifs of apolipoproteins include amphipathic alpha-helixes and beta-sheets. Plasma apolipoprotein (apo) M lacks an external amphipathic motif but, nevertheless, is exclusively associated with lipoproteins (mainly high density lipoprotein). Uniquely, however, apoM is secreted to plasma without cleavage of its hydrophobic NH(2)-terminal signal peptide. To test whether the signal peptide serves as a lipoprotein anchor for apoM in plasma, we generated mice expressing a mutated apoM(Q22A) cDNA in the liver (apoM(Q22A)-Tg mice (transgenic mice)) and compared them with mice expressing wild-type human apoM (apoM-Tg mice). The substitution of the amino acid glutamine 22 with alanine in apoM(Q22A) results in secretion of human apoM without a signal peptide. The human apoM mRNA level in liver and the amount of human apoM protein secretion from hepatocytes were similar in apoM-Tg and apoM(Q22A)-Tg mice. Nevertheless, human apoM was not detectable in plasma of apoM(Q22A)-Tg mice, whereas it was easily measured in the apoM-Tg mice. To examine the plasma metabolism, recombinant apoM lacking the signal peptide was produced in Escherichia coli and injected into wild-type mice. The apoM without signal peptide did not associate with lipoproteins and was rapidly cleared in the kidney. Accordingly, ligation of the kidney arteries in apoM(Q22A)-Tg mice resulted in rapid accumulation of human apoM in plasma. The data suggest that hydrophobic signal peptide sequences, if preserved upon secretion, can anchor plasma proteins in lipoproteins. In the case of apoM, this mechanism prevents rapid loss by filtration in the kidney.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

4 Bio Entities

Trail: Publication

0 Expression