|  Help  |  About  |  Contact Us

Publication : Structural basis of species-specific endotoxin sensing by innate immune receptor TLR4/MD-2.

First Author  Ohto U Year  2012
Journal  Proc Natl Acad Sci U S A Volume  109
Issue  19 Pages  7421-6
PubMed ID  22532668 Mgi Jnum  J:184807
Mgi Id  MGI:5426338 Doi  10.1073/pnas.1201193109
Citation  Ohto U, et al. (2012) Structural basis of species-specific endotoxin sensing by innate immune receptor TLR4/MD-2. Proc Natl Acad Sci U S A 109(19):7421-6
abstractText  Lipopolysaccharide (LPS), also known as endotoxin, activates the innate immune response through toll-like receptor 4 (TLR4) and its coreceptor, MD-2. MD-2 has a unique hydrophobic cavity that directly binds to lipid A, the active center of LPS. Tetraacylated lipid IVa, a synthetic lipid A precursor, acts as a weak agonist to mouse TLR4/MD-2, but as an antagonist to human TLR4/MD-2. However, it remains unclear as to how LPS and lipid IVa show agonistic or antagonistic activities in a species-specific manner. The present study reports the crystal structures of mouse TLR4/MD-2/LPS and TLR4/MD-2/lipid IVa complexes at 2.5 and 2.7 A resolutions, respectively. Mouse TLR4/MD-2/LPS exhibited an agonistic "m"-shaped 2:2:2 complex similar to the human TLR4/MD-2/LPS complex. Mouse TLR4/MD-2/lipid IVa complex also showed an agonistic structural feature, exhibiting architecture similar to the 2:2:2 complex. Remarkably, lipid IVa in the mouse TLR4/MD-2 complex occupied nearly the same space as LPS, although lipid IVa lacked the two acyl chains. Human MD-2 binds lipid IVa in an antagonistic manner completely differently from the way mouse MD-2 does. Together, the results provide structural evidence of the agonistic property of lipid IVa on mouse TLR4/MD-2 and deepen understanding of the ligand binding and dimerization mechanism by the structurally diverse LPS variants.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

4 Bio Entities

Trail: Publication

0 Expression