|  Help  |  About  |  Contact Us

Publication : Reactive oxygen species derived from NOX1/NADPH oxidase enhance inflammatory pain.

First Author  Ibi M Year  2008
Journal  J Neurosci Volume  28
Issue  38 Pages  9486-94
PubMed ID  18799680 Mgi Jnum  J:142756
Mgi Id  MGI:3822095 Doi  10.1523/JNEUROSCI.1857-08.2008
Citation  Ibi M, et al. (2008) Reactive oxygen species derived from NOX1/NADPH oxidase enhance inflammatory pain. J Neurosci 28(38):9486-94
abstractText  The involvement of reactive oxygen species (ROS) in an augmented sensitivity to painful stimuli (hyperalgesia) during inflammation has been suggested, yet how and where ROS affect the pain signaling remain unknown. Here we report a novel role for the superoxide-generating NADPH oxidase in the development of hyperalgesia. In mice lacking Nox1 (Nox1(-/Y)), a catalytic subunit of NADPH oxidase, thermal and mechanical hyperalgesia was significantly attenuated, whereas no change in nociceptive responses to heat or mechanical stimuli was observed. In dorsal root ganglia (DRG) neurons of Nox1(+/Y), pretreatment with chemical mediators bradykinin, serotonin, or phorbol 12-myristate 13-acetate (PMA) augmented the capsaicin-induced calcium increase, whereas this increase was significantly attenuated in DRG neurons of Nox1(-/Y). Concomitantly, PMA-induced translocation of PKCepsilon was markedly perturbed in Nox1(-/Y) or Nox1(+/Y) DRG neurons treated with ROS-scavenging agents. In cells transfected with tagged PKCepsilon, hydrogen peroxide induced translocation and a reduction in free sulfhydryls of full-length PKCepsilon but not of the deletion mutant lacking the C1A domain. These findings indicate that NOX1/NADPH oxidase accelerates the translocation of PKCepsilon in DRG neurons, thereby enhancing the TRPV1 activity and the sensitivity to painful stimuli.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

4 Bio Entities

Trail: Publication

0 Expression