|  Help  |  About  |  Contact Us

Publication : LRRC52 (leucine-rich-repeat-containing protein 52), a testis-specific auxiliary subunit of the alkalization-activated Slo3 channel.

First Author  Yang C Year  2011
Journal  Proc Natl Acad Sci U S A Volume  108
Issue  48 Pages  19419-24
PubMed ID  22084117 Mgi Jnum  J:180391
Mgi Id  MGI:5306194 Doi  10.1073/pnas.1111104108
Citation  Yang C, et al. (2011) LRRC52 (leucine-rich-repeat-containing protein 52), a testis-specific auxiliary subunit of the alkalization-activated Slo3 channel. Proc Natl Acad Sci U S A 108(48):19419-24
abstractText  KSper, a pH-dependent K(+) current in mouse spermatozoa that is critical for fertility, is activated by alkalization in the range of pH 6.4-7.2 at membrane potentials between -50 and 0 mV. Although the KSper pore-forming subunit is encoded by the Slo3 gene, heterologously expressed Slo3 channels are largely closed at potentials negative to 0 mV at physiological pH. Here we identify a Slo3-associating protein, LRRC52 (leucine-rich repeat-containing 52), that shifts Slo3 gating into a range of voltages and pH values similar to that producing KSper current activation. Message for LRRC52, a homolog of the Slo1-modifying LRRC26 protein, is enriched in testis relative to other homologous LRRC subunits and is developmentally regulated in concert with that for Slo3. LRRC52 protein is detected only in testis. It is markedly diminished from Slo3(-/-) testis and completely absent from Slo3(-/-) sperm, indicating that LRRC52 expression is critically dependent on the presence of Slo3. We also examined the ability of other LRRC subunits homologous to LRRC26 and LRRC52 to modify Slo3 currents. Although both LRRC26 and LRRC52 are able to modify Slo3 function, LRRC52 is the stronger modifier of Slo3 function. Effects of other related subunits were weaker or absent. We propose that LRRC52 is a testis-enriched Slo3 auxiliary subunit that helps define the specific alkalization dependence of KSper activation. Together, LRRC52 and LRRC26 define a new family of auxiliary subunits capable of critically modifying the gating behavior of Slo family channels.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

9 Bio Entities

Trail: Publication

0 Expression