|  Help  |  About  |  Contact Us

Publication : FUS-DDIT3 prevents the development of adipocytic precursors in liposarcoma by repressing PPARgamma and C/EBPalpha and activating eIF4E.

First Author  Pérez-Mancera PA Year  2008
Journal  PLoS One Volume  3
Issue  7 Pages  e2569
PubMed ID  18596980 Mgi Jnum  J:138016
Mgi Id  MGI:3803552 Doi  10.1371/journal.pone.0002569
Citation  Perez-Mancera PA, et al. (2008) FUS-DDIT3 prevents the development of adipocytic precursors in liposarcoma by repressing PPARgamma and C/EBPalpha and activating eIF4E. PLoS One 3(7):e2569
abstractText  BACKGROUND: FUS-DDIT3 is a chimeric protein generated by the most common chromosomal translocation t(12;16)(q13;p11) linked to liposarcomas, which are characterized by the accumulation of early adipocytic precursors. Current studies indicate that FUS-DDIT3- liposarcoma develops from uncommitted progenitors. However, the precise mechanism whereby FUS-DDIT3 contributes to the differentiation arrest remains to be elucidated. METHODOLOGY/PRINCIPAL FINDINGS: Here we have characterized the adipocyte regulatory protein network in liposarcomas of FUS-DITT3 transgenic mice and showed that PPARgamma2 and C/EBPalpha expression was altered. Consistent with in vivo data, FUS-DDIT3 MEFs and human liposarcoma cell lines showed a similar downregulation of both PPARgamma2 and C/EBPalpha expression. Complementation studies with PPARgamma but not C/EBPalpha rescued the differentiation block in committed adipocytic precursors expressing FUS-DDIT3. Our results further show that FUS-DDIT3 interferes with the control of initiation of translation by upregulation of the eukaryotic translation initiation factors eIF2 and eIF4E both in FUS-DDIT3 mice and human liposarcomas cell lines, explaining the shift towards the truncated p30 isoform of C/EBPalpha in liposarcomas. Suppression of the FUS-DDIT3 transgene did rescue this adipocyte differentiation block. Moreover, eIF4E was also strongly upregulated in normal adipose tissue of FUS-DDIT3 transgenic mice, suggesting that overexpression of eIF4E may be a primary event in the initiation of liposarcomas. Reporter assays showed FUS-DDIT3 is involved in the upregulation of eIF4E in liposarcomas and that both domains of the fusion protein are required for affecting eIF4E expression. CONCLUSIONS/SIGNIFICANCE: Taken together, this study provides evidence of the molecular mechanisms involve in the disruption of normal adipocyte differentiation program in liposarcoma harbouring the chimeric gene FUS-DDIT3.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

4 Bio Entities

Trail: Publication

0 Expression