|  Help  |  About  |  Contact Us

Publication : MLL2 conveys transcription-independent H3K4 trimethylation in oocytes.

First Author  Hanna CW Year  2018
Journal  Nat Struct Mol Biol Volume  25
Issue  1 Pages  73-82
PubMed ID  29323282 Mgi Jnum  J:308602
Mgi Id  MGI:6730380 Doi  10.1038/s41594-017-0013-5
Citation  Hanna CW, et al. (2018) MLL2 conveys transcription-independent H3K4 trimethylation in oocytes. Nat Struct Mol Biol 25(1):73-82
abstractText  Histone 3 K4 trimethylation (depositing H3K4me3 marks) is typically associated with active promoters yet paradoxically occurs at untranscribed domains. Research to delineate the mechanisms of targeting H3K4 methyltransferases is ongoing. The oocyte provides an attractive system to investigate these mechanisms, because extensive H3K4me3 acquisition occurs in nondividing cells. We developed low-input chromatin immunoprecipitation to interrogate H3K4me3, H3K27ac and H3K27me3 marks throughout oogenesis. In nongrowing oocytes, H3K4me3 was restricted to active promoters, but as oogenesis progressed, H3K4me3 accumulated in a transcription-independent manner and was targeted to intergenic regions, putative enhancers and silent H3K27me3-marked promoters. Ablation of the H3K4 methyltransferase gene Mll2 resulted in loss of transcription-independent H3K4 trimethylation but had limited effects on transcription-coupled H3K4 trimethylation or gene expression. Deletion of Dnmt3a and Dnmt3b showed that DNA methylation protects regions from acquiring H3K4me3. Our findings reveal two independent mechanisms of targeting H3K4me3 to genomic elements, with MLL2 recruited to unmethylated CpG-rich regions independently of transcription.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

2 Bio Entities

Trail: Publication

0 Expression